von Sven Geitmann | Jun 19, 2024 | 2024, Deutschland, Elektromobilität, Meldungen, Politik, Wasserstoffwirtschaft
E-Fuels werden – unabhängig von ihrer umstrittenen Eignung für den Pkw-Sektor – zur Dekarbonisierung des Verkehrssektors unabdingbar sein. Der Bundesminister für Digitales und Verkehr, Dr. Volker Wissing, verfolgt daher weiter seinen Kurs zum Hochlauf von E-Fuels. Am 4. Juni 2024 untermauerte er seine Marschrichtung, indem er in Berlin zum 2. International E-Fuels Dialogue 2024 einlud und dort eine „Berliner Erklärung“ vorlegte. Nach Ausführungen des BMDV ging es dabei um eine „Verständigung zu Technologieoffenheit, gemeinsamer Forschung und Entwicklung und einheitlichen Standards“.
Wissing erklärte: „E-Fuels sind neben batterieelektrischem Antrieb und Wasserstoff eine wichtige Option für den klimafreundlichen Verkehr der Zukunft – in der Luft, zu Wasser und auch auf der Straße. […] Wir wollen Forschung und Entwicklung sowie den Aufbau von Produktionsanlagen fördern. Dafür möchten wir auch private Investitionen anreizen. Den Ausbau der erneuerbaren Energien werden wir weiter vorantreiben.“
Dr. Marius Skuodis, Minister für Verkehr und Kommunikation in Litauen, sagte: „Mit seinem großen Potenzial für erneuerbare Energien kann Litauen zum Produzenten von Wasserstoff und verwandten synthetischen Kraftstoffen werden.“ Taku Ishii, Parlamentarischer Vizeminister für Wirtschaft, Handel und Industrie in Japan, ergänzte: „Zur Erreichung einer CO2-neutralen Gesellschaft spielt das Konzept des ,dreifachen Durchbruchs‘ – die gleichzeitige Realisierung von Dekarbonisierung, Wirtschaftswachstum und Energiesicherheit – eine Schlüsselrolle. E-Fuels können in diesem Zusammenhang einen wichtigen Beitrag zum dreifachen Durchbruch leisten.“
---------- Werbung ----------
Die nächste Ausgabe des E-Fuels Dialogue wird im Sommer 2025 in Tanger in Marokko stattfinden.
ILA in Berlin
E-Fuels waren auch während der Internationalen Luft- und Raumfahrtausstellung (ILA) vom 5. bis 9. Juni 2024 in der Hauptstadt ein zentrales Thema. In diesem Rahmen wies der ehemalige Mineralölverband und heutige Wirtschaftsverband Fuels und Energie en2x darauf hin, dass es „ab dem nächsten Jahr eine Beimischungsvorgabe der EU für Sustainable Aviation Fuels (SAF)“ gibt. Hauptgeschäftsführer Prof. Christian Küchen erklärte: „Quoten allein reichen jedoch nicht, um die jetzt notwendigen Investitionen in die SAF-Produktion auszulösen. Die E-SAF-Quote der EU wird 2035 bereits auf fünf Prozent angestiegen sein. Es ist derzeit nicht zu erkennen, dass die dafür erforderlichen Anlagen zeitgerecht zur Verfügung stehen werden.“
---------- Werbung ----------
Einen entsprechenden Forderungskatalog mit zehn Maßnahmen übergab der Verband während der ILA an die Beauftragte der Bundesregierung für die Deutsche Luft- und Raumfahrt Dr. Anna Christmann sowie den Parlamentarischen Staatssekretär beim Bundesverkehrsminister Oliver Luksic.
von Sven Geitmann | Jun 17, 2024 | 2024, Allgemein, Deutschland, Elektromobilität, Markt, Meldungen, News, Politik
Interview mit Elena Hof, Paul Karzel und Jörg Starr von der CEP
Die Clean Energy Partnership (CEP), ein Zusammenschluss verschiedener Stakeholder, insbesondere aus dem Automobil- und Energiesektor, initiierte ein gemeinsames Statement mit dem Deutschen Wasserstoff-Verband e. V. (DWV) und wandte sich am 27. April 2024 mit eindringlichen Worten an die Bundesregierung.
Offener Brief von der CEP
---------- Werbung ----------
HZwei: Frau Hof, Herr Karzel, Herr Starr, was war aus Ihrer Sicht der Tropfen, der das Fass zum Überlaufen gebracht hat? Warum kommt Ihr offener Brief genau jetzt?
CEP: Zum Zeitpunkt der Veröffentlichung unseres offenen Briefes an die Bundesregierung gab es keine offizielle Ankündigung eines Förderstopps. Jedoch wurden wichtige Infrastrukturprojekte immer wieder verschoben. Die Aussage der Regierung, dass keine Haushaltsmittel mehr für die Wasserstoffmobilität bereitgestellt werden und keine neuen Förderprogramme geplant sind, signalisiert einen Stillstand. Die Lage ist ernst, weshalb wir den Dialog mit den Akteuren der Bundesregierung und Ministerien suchen. Unser Ziel: gemeinsam tragfähige und nachhaltige Lösungen finden. Ansonsten ist eine Abwanderung der Wasserstoffindustrie in andere Märkte, also in andere Länder, wie zum Beispiel in den asiatischen Raum, die Folge, was die Stärke des Wirtschaftsstandorts Deutschland gefährdet.
---------- Werbung ----------
HZwei: Sie fordern „die sofortige Wiederaufnahme einer verlässlichen Förderung der Wasserstoffmobilität, um die Klimaziele zu erreichen und den deutschen Wirtschaftsstandort zu sichern“. Offiziell gab und gibt es doch gar keinen Förderstopp, nur eine zeitintensive Überprüfung der Sachverhalte. Oder sehe ich das falsch?
CEP: Das ist korrekt. Auch wenn es noch keinen offiziellen Förderstopp gibt, sind die Anzeichen unmissverständlich. Verschobene Infrastrukturprojekte und die Aussage, dass keine weiteren Förderprogramme bereitgestellt werden, deuten stark auf die von uns thematisierte Situation hin. Unter diesen Umständen ist es für Unternehmen in Deutschland nicht mehr attraktiv zu investieren. Wir brauchen von der Bundesregierung eine Zusicherung, dass Wasserstoff eine zentrale Rolle in der Energie- und Verkehrswende spielen wird und diese Transformation von Industrie und Politik gemeinsam getragen wird.
HZwei: Sie bezweifeln also, dass die ursprünglichen Förderinstrumente jemals wieder reaktiviert werden? Gibt es Indizien, die diesen Verdacht nahelegen könnten?
CEP: Wir fokussieren uns auf Fakten. Wir betrachten den aktuellen Status und sehen einen ganz klaren Handlungsbedarf: Es braucht eine zeitnahe Wiederaufnahme einer verlässlichen Förderung der Wasserstoffmobilität. Der momentane Förderstopp trifft die Industrie an einem sensiblen Punkt, an dem sie bereits viel erreicht hat, die Transformation jedoch noch nicht ohne politische Unterstützung schaffen kann. Das ist, was für uns zählt. Jetzt muss investiert werden, auch um zum Beispiel die Anforderungen der AFIR zu erfüllen.
HZwei: In aktuellen Schreiben der Regierung werden ganz klar batterieelektrische Mobilität und Ladeinfrastruktur gefördert. Der immer insbesondere von der FDP propagierte Ansatz der Technologieoffenheit findet sich momentan nicht wieder. Ist dies Ihre Kritik?
CEP: Unsere Kritik ist, dass durch den aktuellen Kurs leichtfertig Chancen für den Wirtschaftsstandort Deutschland und das Erreichen der Klimaziele verspielt werden. Deutschland nimmt derzeit in Europa eine Vorreiterrolle im Bereich Wasserstoffmobilität ein und setzt weltweite Standards, denen andere Länder folgen. Diese Führungsposition beruht auf einer starken Technologie- und Innovationskraft, die auf einer zentralen Erkenntnis basiert: Wasserstoff ist ein vielseitiger Energieträger, der verschiedene Sektoren wie Industrie, Wärme, Wohnen und Mobilität miteinander verknüpfen und die Stromnetze erheblich entlasten kann. Der Wegfall einer dieser Komponenten, zum Beispiel der Mobilität, gefährdet den weiteren Markthochlauf von Wasserstoff und damit die gesamte Transformation zu erneuerbaren Energien.
HZwei: Können Sie uns dafür Beispiele nennen?
CEP: Die Industrie plant, bis 2030 über 40.000 Wasserstoff-Lkw auf die Straße zu bringen und bis zu 400 Wasserstofftankstellen zu errichten, was den CO2-Ausstoß im Verkehrssektor erheblich reduzieren wird, um die in Paris vereinbarten Klimaziele zu erreichen. Unterschätzt werden in diesem Kontext zahlreiche Synergieeffekte mit anderen Branchen: Wenn die Automobilindustrie Brennstoffzellensysteme produziert und damit die Nachfrage nach Elektrolysesystemen erhöht, werden die Kosten durch Skaleneffekte sinken, wovon auch andere Bereiche profitieren. Für Industrien, die Wasserstoff als Rohstoff nutzen wollen, sind sinkende Herstellungskosten eine wichtige Voraussetzung für den Erfolg. Diese Vernetzung der Sektoren zeigt, wie entscheidend die Integration von Wasserstofftechnologien für die gesamte Energiewende ist.
HZwei: Sie sagen, dass das aktuelle Aussetzen der Förderung den Hochlauf der Wasserstoffmobilität hemmt und bereits getätigte Investitionen gefährdet. Kennen Sie Projekte, die bereits gecancelt wurden? Können Sie Beispiele nennen?
CEP: Das lässt sich schwer bestimmen, da Projekte erst nach der Zusage veröffentlicht werden. Aber was wir sagen können, ist, dass von den 303 eingereichten Projekten im Nationalen Innovationsprogramm Wasserstoff- und Brennstoffzellentechnologie (NIP) von 2016 bis 2023 bisher nur 99 genehmigt wurden. Besonders die Förderaufrufe für Wasserstofftankstellen und Elektrolyseure waren stark überzeichnet, was das enorme Interesse und die nun verlorenen Potentiale verdeutlicht. Im Koalitionsvertrag hatte die Bundesregierung die Bedeutung der Wasserstoffwirtschaft deutlich hervorgehoben. Diese Zielsetzung muss jetzt aktiv gestaltet werden, sonst drohen eine Entwertung bereits getätigter Investitionen sowie ein Verfehlen der Klimaziele.
HZwei: Dazu heißt es häufig, dass die batteriebetriebene E-Mobilität bereits weiter entwickelt sei und mehr Entwicklungspotential aufweise. Was entgegnen Sie darauf?
CEP: Auch hier fokussieren wir uns auf unseren Bereich. Die Clean Energy Partnership steht für Wasserstoffmobilität. Bei uns arbeiten Unternehmen branchen- und sektorenübergreifend am weiteren Markthochlauf der Wasserstoffmobilität. Gemeinsam arbeiten wir an verkehrsträgerübergreifenden Standards. Der Grund? Die Mitglieder der CEP wissen um das enorme Potential von Wasserstoff für die Mobilität, die Verkehrswende, die Energiewende. Das ist, was zählt. Wasserstoff ist ein essentieller Bestandteil einer erfolgreichen Verkehrs- und Energiewende, eröffnet großartige Chancen für den Wirtschaftsstandort Deutschland und ist ein Baustein, um die Klimaziele zu erreichen.
HZwei: Weiter heißt es, es sei nicht Aufgabe des Staates, sich um den Infrastrukturaufbau zu kümmern. Bei Ladesäulen macht er es indes, bei H2-Tankstellen jetzt nicht mehr. Wollen Sie eine Bevorzugung oder einfach nur eine Gleichbehandlung?
CEP: Unserer Meinung nach ist es wenig zielführend, hier die Behandlung von Technologien zu vergleichen. Wenn Sie unsere Mitgliederliste ansehen, werden Sie erkennen, dass es durchaus Unternehmen gibt, die auf beide Technologien setzen. Es geht darum, Potentiale zu erkennen und zu nutzen. Wir setzen uns für die Wiederaufnahme einer verlässlichen, zielgerichteten, sinnvollen Förderung für Wasserstoff ein. Für ein konstruktives Miteinander von Politik, Industrie und Wissenschaft.
HZwei: Wir reden jetzt hier über den Mobilitätssektor. Sehen Sie Parallelen in anderen Energiesektoren?
CEP: Wir sehen hier nicht nur Parallelen, sondern eine regelrechte Symbiose. Die Technologie ist bereit, gleichzeitig gilt es jetzt wichtige Herausforderungen zu meistern, um das nächste Level zu zünden: Im Kontext der Elektrolyse gibt es noch Optimierungspotential und damit Arbeit in der Weiterentwicklung des Systems. Wir wissen zudem, dass in Zukunft, beispielsweise in der Stahlindustrie, große Wasserstoffmengen gebraucht werden. Daher müssen wir jetzt die Systemkosten senken, was nur über einen Massenmarkt möglich ist. Und hier kommt die Mobilität ins Spiel – als Sektor, in dem dieser wichtige, nächste Schritt gegangen werden kann. Das ist der Weg zu einem stabilen Hochlauf und Investition in eine große Produktionsdimension.
HZwei: Wie sehen Sie Deutschland im weltweiten Vergleich positioniert? Ist China nicht längst als H2-Leitmarkt enteilt?
CEP: Deutschland hat momentan eindeutig eine Vorreiterrolle inne. Diesen Status könnte Deutschland an Märkte wie China, aber auch USA oder Japan verlieren. Die Folge wäre eine Abwanderung von Know-how und Arbeitsplätzen, was nicht das Interesse der deutschen Industriepolitik sein kann. Wir sollten aus den Fehlern, die wir vor Jahren in der Solarpolitik gemacht haben, lernen. Auch hier war Deutschland nach einer anfänglichen Vorreiterrolle von einer Abwanderung ins Ausland betroffen.
HZwei: Sie nennen Ihren offenen Brief einen „Appell“. Warum so zurückhaltend, warum keine Forderungen?
CEP: In unserem offenen Brief an die Bundesregierung haben wir mehrere wichtige Forderungen formuliert. Noch wichtiger als diese Forderungen ist es uns jedoch, einen zielführenden Austausch zu initiieren, um jetzt Lösungen zu finden. Inhaltlich fordern wir die Umsetzung der Nationalen Wasserstoffstrategie, einschließlich aller Maßnahmen zur Förderung von Wasserstoffmobilitätsprojekten und der Fortführung bereits zugesagter Förderungen. Kurzfristige Fördermittelzusagen sollen dabei unterstützen, die AFIR-Zielvorgaben für den Aufbau der europarechtlich verpflichtenden Wasserstoffbetankungsinfrastruktur zu erfüllen. Wir erwarten zudem Initialförderungen für H2-Schwerlastfahrzeuge, die Einführung eines verlässlichen OPEX-Förderprogramms für den Schwerlastgüterverkehr und eine ministerielle Struktur zwischen Bund und Ländern, die den Hochlauf der Wasserstoffmobilität bis 2030 unterstützt und die Förderkulisse den tatsächlichen Marktbedingungen anpasst. Schließlich müssen regulatorische Hürden beseitigt und die Forschung zur Weiterentwicklung der Technologien konsequent gefördert werden.
HZwei: Sie haben explizit Kanzler Scholz, Wirtschaftsminister Habeck, Finanzminister Lindner und Verkehrsminister Wissing angeschrieben. Wen sehen Sie am ehesten als denjenigen an, der zeitnah agieren könnte bzw. sollte?
CEP: Wir haben zentrale politische Akteure angeschrieben – gleichzeitig richten sich unsere Forderungen natürlich an die Politik, die Bundesregierung. Alle von uns konkret adressierten Ansprechpartner sind für diese Thematik wichtig, Ihren Verantwortungsbereichen kommt eine große Bedeutung zu. Wir hoffen auf eine breite Unterstützung und stehen für Gespräche jederzeit gerne bereit.
Interviewer: Sven Geitmann
von Sven Geitmann | Mai 29, 2024 | 2024, Allgemein, Elektromobilität, Entwicklung, Meldungen, News
Thermochemisches Reaktionssystem zur Erwärmung von BZ-Systemen
Der Froststart von Brennstoffzellen ist nach wie vor eine Herausforderung. Bei Temperaturen unter 0 °C sinkt nicht nur der Wirkungsgrad, auch Degradationsmechanismen, wie zum Beispiel die Eisbildung in den Membranen, reduzieren die Lebensdauer der Zellen erheblich. Um diese Degradation zu vermeiden, ist es nötig, ein Brennstoffzellensystem schnell und zuverlässig mit thermischer Energie zu versorgen, sobald die Temperatur unter dem Gefrierpunkt liegt [1].
Eine Aufheizung erfolgt in der Regel durch integrierte elektrische Heizelemente, die kaum zusätzliches Gewicht verursachen und flexibel einsetzbar sind. Allerdings benötigen sie zusätzliche elektrische Energie, die üblicherweise von einer Batterie bereitgestellt wird. Liegt die Umgebungstemperatur jedoch unter -20 °C, kann dies wiederum zu einer starken Degradation und/oder Funktionsunfähigkeit der Batterie führen. Bei Temperaturen zwischen -20 °C und 0 °C ist die katalytische Verbrennung von Wasserstoff eine weitere Möglichkeit, die benötigte Wärmeenergie bereitzustellen. Für Temperaturen unter -20 °C gibt es jedoch nur in begrenztem Maße geeignete Technologien.
---------- Werbung ----------
Da während des Betriebs einer Brennstoffzelle ausreichend Abwärme vorhanden ist, könnte man sich fragen, ob nicht ein Teil dieser Energie gespeichert und beim nächsten Froststart bereitgestellt werden könnte, siehe Abb. 2. Diese Möglichkeit würde jedoch voraussetzten, dass es einen Speicher gibt, der zum einen thermische Energie quasi verlustfrei speichern kann – da der nächste Start erst Tage später sein könnte. Zum anderen muss das Speichersystem diese Energie bei Bedarf auch bei Temperaturen von unter -20 °C innerhalb von kurzer Zeit freisetzen können.
Metallhydrid-Wasserstoff-System
---------- Werbung ----------
Abb. 1: Links: Reaktionsgleichung für die MH-H2-Reaktion. Rechts: Schema der Druck-Temperatur-Korrelation des reversiblen MH-H2-Reaktionssystems.
Metallhydride (MH) reagieren reversibel mit Wasserstoff (H2, s. Abb. 1, li.).
Bei diesem Reaktionssystem handelt es sich um ein sogenanntes Gas-Feststoff-Reaktionssystem, das aufgrund zweier Besonderheiten für die verlustfreie Langzeitspeicherung von thermischer Energie genutzt werden kann: Erstens ermöglicht die Gas-Feststoff-Reaktion eine einfache Trennung der Komponenten – Gas und Feststoff – und damit ihre langfristige und verlustfreie Speicherung. Zweitens ist die reversible Reaktion bei der Absorption exotherm und bei der Desorption von gasförmigem H2 endotherm.
Für den zugrunde liegenden Absorptionsprozess können schnelle Reaktionsgeschwindigkeiten von weniger als 100 Sekunden für eine vollständige Umsetzung, selbst bei Temperaturen unterhalb von
-20 °C, beobachtet werden. In Kombination mit den hohen Reaktionsenthalpien von -25 kJ/molH2 ist es daher möglich, thermische Energie mit einer sehr hohen spezifischen Wärmeleistung aus dem System freizusetzen (5 kW/kgMH).
Abbildung 1 zeigt rechts ein Schema der Temperatur-Druck-Korrelation, die das Reaktionssystem charakterisiert. Aufgrund dieser Korrelation ist es möglich, thermische Energie auf einem höheren Temperaturniveau freizusetzen als auf jenem, auf dem sie eingespeichert wurde – wenn H2 mit einem höheren Druck bereitgestellt wird, als er abgegeben wird. Dies kann beispielsweise dadurch realisiert werden, dass das Modul (TCU) zwischen der H2-Versorgung und dem H2-Verbraucherdruckniveau platziert wird.
Thermochemisches Reaktionssystem
Das thermochemische Reaktionssystem aus Metallhydriden (MH) und Wasserstoff erfüllt all diese Anforderungen (siehe [2]): Es kann große Mengen thermischer Energie über Tage bis Monate verlustfrei speichern und bei Bedarf die thermische Energie bei niedriger Umgebungstemperatur wieder abgeben. Darüber hinaus basiert es auf einer Reaktion mit Wasserstoff, der in jedem Brennstoffzellensystem zur Verfügung steht.
Abb. 2: Schema der Temperaturkontrolleinheit (TCU), die die „Abwärme“ der Brennstoffzelle während des Betriebs für das nächste Froststartereignis speichert.
Die gasseitige Integration eines solchen Metallhydrid-Wärmespeichersystems ist relativ einfach und kann zusätzlich von den verschiedenen vorhandenen Druckniveaus in einer Brennstoffzelleninfrastruktur profitieren. Denn diese unterschiedlichen Druckniveaus ermöglichen die Nutzung der sogenannten Temperatur-Druck-Korrelation von Metallhydrid-Systemen (s. Abb. 1, rechts): Immer dann, wenn Wasserstoff auf hohem Druck zugeführt wird, wird Wärme auf einem hohen Temperaturniveau freigesetzt. Bei der Abgabe von Wasserstoff auf einem niedrigeren Druckniveau kann hingegen Wärme niedriger Qualität gespeichert werden.
Abbildung 3 veranschaulicht das Grundkonzept einer solchen Metallhydrid-basierten Temperaturkontrolleinheit (Temperature Control Unit, TCU). Sobald das Ventil zwischen der H2-Zuleitung und der TCU geöffnet wird, wird Wasserstoff vom Metallhydrid auf dem hohen Druckniveau P1 absorbiert. Die thermische Energie wird auch bei Umgebungstemperaturen von T < -30 °C sofort freigesetzt, und die Brennstoffzelle (BZ) bzw. der H2-Verbraucher kann somit zügig auf mindestens +5 °C aufgeheizt werden. Dadurch werden die Degradationsmechanismen des Froststart-Szenarios vermieden. Sobald die Betriebstemperaturen der Brennstoffzelle mehr als 40 °C betragen, kann wiederum thermische Energie zum „Aufladen“ der TCU bereitgestellt werden, während der Wasserstoff auf niedrigem P2 an die BZ abgegeben wird. Der Wasserstoff wird in diesem System somit nicht verbraucht, sondern nur zur Speicherung der Wärmeenergie in den chemischen Bindungen zwischen H2 und MH verwendet.
Abb. 3: Schema der Integration der TCU in die H2-Infrastruktur. Links: Thermische Entladung, rechts: Thermische Beladung
Entwicklung eines neuartigen Moduls
Am Deutschen Zentrum für Luft- und Raumfahrt (DLR) wurde in den vergangenen Jahren ein neuartiges Modul für diese Anwendung entwickelt. Kernstück ist ein Reaktordesign, das in der Lage ist, hohe thermische Leistungen aus dem MH-Pulver auf ein externes Wärmeträgerfluid zu übertragen, wie zum Beispiel ein Standard-BZ-Kühlfluid. Dazu musste eine Geometrie für einen optimierten Wärme- und Gasübergang entwickelt werden, die weitere Randbedingungen wie die Dichtheit gegenüber H2 sowie das Pulverhandling für den Füllvorgang des Materials berücksichtigt.
Das Design basiert auf drei Rohren mit Durchmessern von 15 mm in einem Bündel mit einer Länge von 250 mm (s. Abb. 4). Im Inneren werden ~ 306 g des MH-Materials als Pulver eingefüllt. Die Betriebsbedingungen sind auf eine maximale Betriebstemperatur von 100 °C und auf einen maximalen Druck von 12 bar eingestellt.
Abb. 4: Bild und Schema des Kernreaktordesigns der TCU. Grün steht für H2, Orange-Rot für das reagierende MH-Pulver und Blau für die Wärmeträgerflüssigkeit.
Um ein System mit einem geringen Gewicht zu realisieren, wurde das Rohrbündeldesign auf der Grundlage additiver Fertigungsverfahren unter Verwendung der Aluminiumlegierung AlSi10 entwickelt. Im Druckverfahren wurden Rippen an der inneren und Nadeln an der äußeren Wärmeübertragungsfläche für einen verbesserten Wärmeübertragungsprozess vom Pulver-MH (orange-rot) zur Wärmeträgerflüssigkeit (blau) integriert. Außerdem wurden in axialer Richtung Filterrohre für den verbesserten radialen Wasserstoffgastransport (grün) vorgesehen. Dadurch konnte ein Design mit einem Verhältnis von Masse des Reaktors zu Masse des Metallhydrids von mReaktor / mMH = 0,97 < 1 realisiert werden. Dies liegt weit unter den herkömmlichen Designs, die üblicherweise Verhältnisse von > 2 aufweisen.
Unter Verwendung dieses Designs wurde eine kleine Serie von zwölf Reaktoren hergestellt und von Industriepartnern befüllt. Die ersten Berst-, Brand- und Falltests wurden erfolgreich durchgeführt.
Abb. 5: TCU mit Oberflächenaufnahme durch eine Thermografiekamera für den Ausgangszustand bei -20 °C und den aktivierten Zustand bei 8 bar
Abb. 5 zeigt Oberflächenaufnahmen des TCU mit einer Thermografiekamera für ein Experiment zum Zeitpunkt des Starts bei -20 °C sowie im aktivierten Zustand, nachdem ein H2-Druck von 8 bar angelegt wurde.
Das Modul hat seine Anwendbarkeit bereits in verschiedenen Untersuchungen bewiesen. So wurde es erfolgreich in ein System mit einem von DLR-TT konzipierten Brennstoffzellenstapel integriert (s. Abb. 6), der im Rahmen des FCCP-Projekts in verschiedene Lastenpedelecs eingebaut wurde. Basierend auf dieser Integration wurde die Anwendbarkeit als thermischer Booster für einen Kaltstart ab -20 °C mit über 2 kW/kgMH als Stand-alone-Einheit nachgewiesen [3]. Weiterhin wurde nachgewiesen, dass die Integration in das Brennstoffzellensystem einen positiven Einfluss auf die Performance ab -7 °C hat. Es wurde ein Temperaturanstieg auf +5 °C in weniger als 40 s gezeigt sowie eine deutlich reduzierte Eisbildung abgeleitet [4].
Abb. 6: Bild eines Brennstoffzellensystems mit integrierter TCU (unten, rechts), siehe [4]
Leistungs-Performance bei -40 °C
Wie bereits erwähnt, gibt es für Temperaturen über -20 °C alternative Heiztechnologien, die nur geringes Zusatzgewicht verursachen (z. B. elektrische Heizungen). Für Temperaturen unter -20 °C gibt es jedoch nur wenige eigenständige Heizungsoptionen. Ein geeignetes Modul könnte somit Brennstoffzellen oder anderen H2-Technologien mit Froststartanforderungen zu einem Durchbruch verhelfen.
Das entwickelte Modul wurde daher kürzlich in einen angepassten Laboraufbau integriert und getestet. Der Aufbau ist in der Lage, Temperaturen von -40 °C im Wärmeträgerfluid zu realisieren und Wasserstoff bei den erforderlichen Drücken von 4 bis 8 bar bereitzustellen. Für die Auswertung der Experimente konnte der H2-Massenstrom und damit die Gesamtmasse des dem Modul zugeführten Wasserstoffs gemessen werden. Außerdem konnte die auf das Wasser-Glykol-Gemisch übertragene Wärmeleistung durch Messung des Flüssigkeitsdurchflusses sowie der Ein- und Austrittstemperaturen bestimmt werden. Die Experimente wurden bei 10, 0, -10, -20, -30 und -40 °C und einem H2-Druck von 8 bar mit einem maximalen Wasserstoffdurchsatz von 50 NLmin-1 durchgeführt.
Eine Zusammenfassung der in der Flüssigkeit gemessenen spezifischen Wärmeleistung in kW/kgMH für verschiedene Einlasstemperaturen von bis zu -40 °C ist in der Grafik in Abbildung 7 dargestellt. Offensichtlich wird die thermische Energie für alle Anfangstemperaturen sofort nach dem Öffnen des Ventils bei t = 10 s freigesetzt. Dies zeigt, dass es auch bei -40 °C keine wesentliche Begrenzung der Reaktionsgeschwindigkeit dieser chemischen Reaktion gibt.
Nach etwa 20 s wird bei der spezifischen Wärmeleistung ein Spitzenwert von ~ 3 kWh/kgMH erreicht. Dieses Maximum ist für alle Anfangstemperaturen identisch und kann auf den maximalen Wasserstoffdurchsatz von 50 NLmin-1, der dem System zugeführt werden kann, zurückgeführt werden. Eine Aufhebung dieser Begrenzung könnte somit noch höhere thermische Leistungen erzielen.
Abb. 7: Spezifische thermische Leistung (links) und freigesetzte spezifische thermische Energie (rechts) für Experimente bei 8 bar H2 und Anfangstemperaturen von bis zu -40 °C
Nach etwa 100 s ist die gesamte im Metallhydrid gespeicherte Wärmeenergie freigesetzt, wie die auf der rechten Achse des Diagramms in Abbildung 7 angegebene spezifische Wärmeenergie zeigt. Mit den vorliegenden Experimenten konnte eine Entladerate oder auch C-Rate des Moduls von ~ 50 h-1 – selbst bei Starttemperaturen von -40 °C – nachgewiesen werden.
Vielseitige Anwendbarkeit des Systems
Das entwickelte TCU-Modul hat somit seine Anwendbarkeit für H2-Systeme bei Froststart bis -40 °C unter Beweis gestellt. Es ist darüber hinaus nicht auf die Kombination mit einer Brennstoffzelle beschränkt, sondern kann auch für andere Systeme verwendet werden, die Wasserstoff verbrauchen oder Wasserstoff in stationären oder mobilen Anwendungen benötigen. Sobald es in ein System integriert ist, ist zudem die Anzahl der TCU-Betriebsereignisse nicht auf Anfangstemperaturen unter -20 °C beschränkt, sondern es können Startvorgänge bei jeder Anfangstemperatur unterhalb der Betriebstemperatur unterstützt werden. Des Weiteren ist das integrierte Modul auch in der Lage, Temperaturspitzen während des Betriebs zu reduzieren. Somit kann das TCU als multifunktionales Modul die Flexibilität und Leistungsfähigkeit des gesamten Wärmemanagements eines H2-Systems erhöhen.
Da das System auf der Speicherung thermischer Energie basiert, ist es offensichtlich, dass die erforderliche Masse und die Materialkosten linear mit der Menge der thermischen Energie (190 kJ/kgMH) ansteigen. Es liegt auf der Hand, dass der Vorteil des Moduls, keine zusätzliche Energie für den Heizvorgang zu verbrauchen, den Nachteil des zusätzlichen Gewichts nur dann überwiegt, wenn das Modul so oft wie möglich verwendet wird. Daher ist die spezifische Dimensionierung und Integration des Systems von entscheidender Bedeutung für die Effizienz des Gesamtsystems. Dies könnte durch intelligente Anfahrstrategien erreicht werden, beispielsweise indem ausreichend Energie für einen Teil des Brennstoffzellensystems, die Batterie, kritische Ventile oder andere wichtige Systemkomponenten bereitgestellt wird.
An diesem Vorhaben beteiligt sind das Unternehmen Tecnodelta, das für die Befüllung, Versiegelung und Aktivierung des Materials in den Reaktoren zuständig ist, sowie die Firma 3D-Laserdruck, die für die Herstellung der Reaktoren mittels additiver Fertigung verantwortlich ist.
Literatur
[1] Liu P, Xu S. A progress review on heating methods and influence factors of cold start for automotive PEMFC system. SAE international, 2020, http://dx.doi.org/10.4271/2020-01-0852.
[2] Kölbig et al., Review on thermal applications for metal hydrides in fuel cell vehicles: Operation modes, recent developments and crucial design aspects, RSER, 2022, https://doi.org/10.1016/j.rser.2022.112385
[3] Bürger et al., Lightweight reactor design by additive manufacturing for preheating applications using metal hydrides, Int J. Hydrogen Energy, 2021, https://doi.org/10.1016/j.ijhydene.2021.06.091
[4] Melnik et al., Energy efficient cold start of a Polymer Electrolyte Membrane Fuel Cell coupled to a thermochemical metal hydride preheater, Applied Energy, 2024, https://doi.org/10.1016/j.apenergy.2023.122585
Autorin: Dr.-Ing. Inga Bürger, DLR Institute of Engineering Thermodynamics, Stuttgart
Alina Keller, Christian Brack, Hanna Lösch, Andreas Weigl, Dr.-Ing. Marc Linder
von Monika Rößiger | Mai 27, 2024 | 2024, Allgemein, Deutschland, Elektromobilität, Energiewirtschaft, Entwicklung, Meldungen, News, Wasserstoffwirtschaft
Fliegen mit Brennstoffzellen und flüssigem Wasserstoff?
In der Forschung dienen Drohnen mit Brennstoffzellen (BZ) und flüssigem Wasserstoff als Modell für eine klimaschonendere Luftfahrt. Die unbemannten Fluggeräte zeigen jedoch auch, welche Hürden es noch zu überwinden gilt. Raketentechnik hilft dabei nicht.
Auf der Elbinsel Hamburg-Finkenwerder empfängt den Besucher ein bizarrer Kontrast zwischen gestern und morgen: Nicht weit von einer beschaulichen Backstein-Siedlung aus den 1950er-Jahren liegt das Zentrum für Angewandte Luftfahrtforschung (ZAL), ein futuristischer Gebäudekomplex mit Hallen, Laboren und Büros. Rund 600 Menschen aus aller Welt arbeiten hier daran, die Zukunft der zivilen Luftfahrt umweltverträglicher und im besten Fall klimaneutral zu machen. Der silberfarbene „Turm“ am Eingang verkündet das Forschungsziel bereits mit der Aufschrift: „Hydrogen. Flying green tomorrow.“ Dabei handelt es sich um einen 20 Meter hohen Tank, gefüllt mit gasförmigem Wasserstoff mit einem Druck von 45 bar.
---------- Werbung ----------
Vom Empfang aus geht es durch lange Flure in den zweiten Stock, von wo aus sich der Blick in die sogenannte Akustikhalle öffnet. Im Prinzip ein Hangar, in dem es ein wenig nach Kunststoff riecht. An den Wänden verlaufen unzählige Rohre, zum Beispiel für Stickstoff, Wasserstoff oder Pressluft. Man hört das Summen und Surren von Aggregaten und Schaltanlagen sowie das Rauschen der Lüftung.
Im Brennstoffzellenlabor des ZAL zeigt Sebastian Altmann auf ein spinnenartiges Objekt aus schwarzer Kohlefaser: „Das ist unsere LiquiDrone, sozusagen der größere Bruder des ZALbatros.“ Beide Namen stehen für H2-Drohnen mit sechs Rotoren, die hier entwickelt wurden. Was bei der LiquiDrone in etwa so aussieht, als hätte man ihr eine rote Taucherflasche auf den Rücken geschnallt, ist ein karbonfaserverstärkter Tank mit gasförmigem Wasserstoff, komprimiert auf 350 bar, der für erste Flugversuche dient. Später wird er durch einen Flüssigwasserstofftank ersetzt. Unter dem Tank befinden sich zwei Kammern mit Brennstoffzellen, die das Gas zusammen mit Luft in Strom umwandeln, und der treibt die Elektromotoren an den Rotoren an.
---------- Werbung ----------
Der „kleinere Bruder“ ZALbatros, der mit ausgeklappten Rotoren gut zwei Meter im Durchmesser misst, ist genau genommen eine Forschungsplattform, die als Basis für wissenschaftliche Projekte dient. Zwei Brennstoffzellensysteme mit einer Leistung von jeweils 800 Watt versorgen die Elektromotoren des Hexakopters mit Strom. „Das Startgewicht beträgt dank des Kohlefaserrumpfes nur etwas mehr als zwölf Kilogramm und er ist dennoch stabil“, erläutert Altmann. „Beim Flugtest erreichte der ZALbatros trotz teilweise böigen Windes eine Flugdauer von zwei Stunden und zehn Minuten. Batteriebetriebene Drohnen müssen oft schon nach einer guten halben Stunde wieder landen, um die Akkus zu laden oder zu wechseln.“
Flüssigwasserstoff für höhere Reichweiten
Doch auch diese schon verlängerte Flugzeit ist nur der Anfang. Denn jetzt wird im aktuellen Forschungsprojekt LiquiDrone der gasförmige Wasserstoff durch seine flüssige Variante (liquefied hydrogen, LH2) ersetzt. „Aufgrund der höheren Energiedichte könnte so eine Drohne bis zu zwölf Stunden im Einsatz sein“, erklärt Ingenieur Altmann, der das Brennstoffzellenlabor im ZAL leitet. Dabei ist eine Umstellung auf flüssigen Wasserstoff alles andere als einfach. Die Speichertechnik für das verflüssigte Gas ist ebenso herausfordernd wie dessen Regasifizierung im Flugbetrieb, die Betankung mit LH2 und die Integration des Ganzen in ein Betriebssystem.
Lösungen dafür sollen im Rahmen des LiquiDrone-Forschungsprojektes gefunden werden, das vom Bundesverkehrsministerium mit knapp 900.000 Euro gefördert wird. An dem Projekt beteiligen sich außer dem ZAL auch die Universität Rostock sowie die Unternehmen RST Rostock-Systemtechnik und BaltiCo.
Für die künftig längere Flugzeit muss der Zustand einer Drohne aus der Ferne komplett erfasst und überwacht werden. Dazu sind Sensoren notwendig, die verschiedene Parameter erheben: Von der Leistungsaufnahme der Motoren über die Betriebstemperatur der Brennstoffzellen bis zur Signalstärke der Funkverbindung.
Abb. 2: H2-Experte Vijay Siva Prasad mit einer H2-Drohne
Ein Tank für die Speicherung von flüssigem Wasserstoff wurde bereits konzipiert und gebaut. Ein Schwerpunkt im Projekt ist die schwierige Frage, wie sich bei möglichst leichtem und kompaktem Tank-Design Wärmebrücken minimieren lassen, die dazu führen würden, dass der flüssige Wasserstoff unkontrolliert verdampft und wieder gasförmig wird. Dieses Phänomen, auch „boil-off“ genannt, ist seit langem bekannt, nicht zuletzt aus der H2-Forschung der Automobilbranche.
Da die Brennstoffzelle gasförmigen Wasserstoff verwendet, wird der Treibstoff aus der Gasphase im Tankinneren entnommen. Durch geschickte Wärmezufuhr soll die Verdampfungsrate innerhalb des Energiespeichers an den Verbrauch angepasst werden. „Auf diese Weise lässt sich fast jedes Gramm Wasserstoff im Tank nutzen“, sagt Altmann. „Das steigert die Effizienz und verlängert die Flugzeit.“ Parallel dazu haben Forscher der Universität Rostock ein Sensorsystem entwickelt, mit dessen Hilfe der Füllstand des Flüssigwasserstoffs überwacht werden kann. Momentan ist die LiquiDrone oft zum Zweck von Tests im Einsatz, die als Vorbereitung für den Flug mit flüssigem Wasserstoff dienen. Der erste LH2-Flug soll im Frühjahr 2024 stattfinden.
Luftfahrtbranche steht vor großen Herausforderungen
Unbemannte Fluggeräte eignen sich gut, um die komplexen Herausforderungen meistern zu können, die Brennstoffzellen und Wasserstoff mit sich bringen. Batteriebetriebene Drohnen sind bereits jahrelang im Einsatz; nun sollen mit ihrer Hilfe Erkenntnisse gewonnen werden, die später skaliert und im besten Fall auf Passagiermaschinen übertragen werden können. Im Vordergrund des LiquiDrone-Projektes steht außer den genannten Fragestellungen zudem eine höhere Leistung, so Altmann, bei der zugleich die Wirtschaftlichkeit beachtet werden soll.
Die Luftfahrt weniger umwelt- und klimaschädlich zu machen, ist inzwischen nicht nur das Ziel der Forschung, sondern der Branche insgesamt. Rund 3,5 Prozent trägt der Flugverkehr nach Angaben des Deutschen Zentrums für Luft- und Raumfahrt (DLR) weltweit zur menschengemachten Klimaerwärmung bei. In dieser Bewertung sind alle Faktoren der Luftfahrt enthalten, das heißt, zu den CO2-Emissionen auch der Ausstoß von Stickoxiden „sowie die Wirkung von Kondensstreifen und Kondensstreifen-Zirren.“
Abb. 3: Sebastian Altmann, Leiter des BZ-Labors (Senior Expert Fuel Cell Lab), vor einem modularen Teststand für Brennstoffzellensysteme, der am ZAL entwickelt wurde
Klimaneutralität in der Luftfahrt zu erreichen ist allein aus technischen Gründen noch schwieriger als in anderen Bereichen. Der Vorstoß in die dritte Dimension sowie die physikalischen Bedingungen in der bisher üblichen Reiseflughöhe erfordern entweder ganz eigene Lösungen oder zumindest Anpassungen der herkömmlichen Technik.
Allein die BZ-Technologie, im landgebundenen Verkehr auf der Straße und der Schiene erfolgreich erprobt, ist im Luftverkehr nicht so einfach zu handhaben. „Anders als bei Anwendungen am Boden birgt der geringe Umgebungsdruck sowie die limitierte Wärmeabfuhr von luftfahrttechnischen Brennstoffzellensystemen besondere Herausforderungen“, erklärt Florian Becker. „Das Wassermanagement ist relativ komplex, jedoch von zentraler Bedeutung, um einen effizienten und langlebigen Betrieb zu ermöglichen.“ Wie man diese Herausforderungen durch innovative Ansätze und Betriebsstrategien bewältigen kann, untersucht er als wissenschaftlicher Mitarbeiter des DLR, ebenfalls im Brennstoffzellen-Labor des ZAL.
Nicht nur Airbus arbeitet an H2
Um die Erkenntnisse aus dem Labor in der Praxis zu testen, ist der Weg buchstäblich kurz: Nur drei Kilometer entfernt liegt das Werk des Flugzeugherstellers Airbus, der sich ebenfalls am ZAL beteiligt. Der Branchenriese hat bekanntlich das Ziel verkündet, im Jahr 2035 eine Passagiermaschine auf den Markt zu bringen, die mithilfe eines Wasserstoffantriebs erheblich emissionsärmer als heutige Flugzeuge sein soll. Als drittgrößter Standort für die zivile Luftfahrt weltweit verfügt Hamburg über ein dicht geknüpftes Netz aus Hochschulen, Instituten und branchenspezifischen Firmen, die Forschung und Entwicklung mit Fokus auf Nachhaltigkeit betreiben. Dazu tragen insbesondere kleine und mittelständische Unternehmen (KMU) bei.
So hat beispielsweise der Ingenieur-Dienstleister Teccon, der allein im H2-Bereich 35 Mitarbeiter beschäftigt, das öffentlich geförderte Forschungsprojekt H2 Finity initiiert und die Mittel dafür eingeworben. Dabei geht es um die Entwicklung eines skalierbaren H2-Antriebsstrangs für leichte und mittlere Fluggeräte, die in einem Verbund aus KMU und unter Mitwirkung des ZAL umgesetzt wird.
„Anhand einer Drohne mit einer Spannweite von 3,5 Metern und 25 Kilogramm Startgewicht erproben wir den hybrid-elektrischen Antriebsstrang“, erklärt Jörg Manthey von Teccon, federführend für das Projekt zuständig. Der H2-Antriebsstrang werde optimiert und für höhere Leistungen weiterentwickelt. „Unser Ziel ist ein modular skalierbares Konzept, das von Tragflügel-Drohnen bis hin zu Kleinflugzeugen reicht, die dann einen umweltfreundlichen und leisen Antrieb besitzen sollen.“ Skalierbar bedeutet in diesem Fall, dass der gesamte Betrieb der Drohne schließlich auch mit 500 Kilogramm Startgewicht funktionieren soll.
Weil die Zertifizierungs- und Zulassungsverfahren in der Luftfahrtbranche aus Sicherheitsgründen besonders aufwändig sind, denken die beteiligten Teams die notwendigen Verfahren gleich mit, betont Manthey, „damit die Technologie nach Projektende schnell eingesetzt werden kann“. Pionierleistungen wie der erste Flug mit flüssigem Wasserstoff einerseits und die mühselige LH2-Forschung an Drohnen andererseits sind kein Widerspruch, sondern gehören zusammen. Denn so wichtig solche Pilotflüge auch sind, geht damit nicht automatisch eine Lösung für eine industrietaugliche Serienproduktion einher.
Dass bemannte Flugkörper mit flüssigem Wasserstoff fliegen, kennt man seit Jahrzehnten aus der Raketenforschung. Allerdings sind Raketen bislang nicht wiederverwertbar, und wie schwierig der Weg dahin ist, kann die Öffentlichkeit ja an entsprechenden Experimenten von US-Raumfahrtunternehmen mitverfolgen. Der Umgang mit gasförmigem Wasserstoff ist erheblich einfacher als der mit flüssigem. „Abgesehen davon, dass LH2 erstmal hergestellt werden muss, braucht man dafür ein geeignetes Transportgefäß und ein Betankungssystem, das sich sicher bedienen lässt“, erklärt Manthey. „Das alles muss serientauglich sein und schließlich zertifiziert werden.“ Nur dann kann der Umgang mit dem klimaneutralen Treibstoff eines Tages so selbstverständlich werden wie heute mit Benzin oder Kerosin.
Abb. 4: Prinzipieller Aufbau eines Flüssigwasserstoffspeichers, wie er künftig in einer LiquiDrone getestet werden soll. Dieses Modell dient nur dazu, die Technik gegenüber Studenten oder Besuchern zu erklären.
Autorin: Monika Rößiger
von Marcel Corneille | Mai 27, 2024 | 2024, Allgemein, Deutschland, Elektromobilität, Meldungen, News, Wasserstoffwirtschaft
Planungssicherheit schaffen durch den Aufbau von H2-Infrastruktur
Lange haben wir die Frage diskutiert, was beim Hochlauf einer Wasserstoffmobilität an erster Stelle steht. Doch dieses Henne-Ei-Problem gibt es eigentlich gar nicht: Die Tankstelle kommt immer zuerst! Warum das so ist, zeigt beispielhaft die erste Wasserstofftankstelle in Gießen.
Im August 2023 wurde von der Firma Roth Holding & Co. KG die erste Wasserstofftankstelle im Landkreis Gießen unter dem Label „Clean Energy Station“ in Betrieb genommen. Vor der vorangegangen Planungs- und Genehmigungsphase hatte sich der Betreiber Frank Roth zwei wesentliche Fragen gestellt: Habe ich heute Kunden für die Wasserstofftankstelle? Und definieren die gesetzlichen Rahmenbedingungen klar, was grüner Wasserstoff ist?
---------- Werbung ----------
In beiden Fällen lautete die Antwort nein. Aber das Gefühl war: Der Kunde will grünen Wasserstoff, also fange ich an, eine entsprechende Tankstelle zu bauen. Schon während der Bauphase zeigte sich, dass die Kunden kommen und grünen Wasserstoff wollen. Wie hat das so gut geklappt?
Die Anlage
Diese Anlage am Schiffenberger Weg ist für alle Fahrzeugtypen geeignet und bietet als Multi-Energie-Tankstelle Diesel, Benzin, Elektrizität und Wasserstoff an. Vor Ort wird grüner Wasserstoff aus eigenen, regionalen Windkraft- und Solaranlagen produziert. Die Erzeugung mittels Elektrolyse erfolgt mit einem 1,25-MWel-PEM-Elektrolyseur, der auf 2,5 MWel erweiterbar ist und in der Ausbaustufe bis zu 36 kgH2/h produzieren kann. Der H2-Speicher an der Tankstelle kann bis zu zwei Tonnen Wasserstoff speichern.
---------- Werbung ----------
Die Abgabe des Wasserstoffs erfolgt mit 350 bar an Busse sowie Lkw und mit 700 bar an Pkw. Um Schwankungen bei der Erzeugung oder Nachfrage abzufangen, kann auch externer Strom in den Elektrolyseur eingespeist werden. Außerdem lässt sich Wasserstoff per Lkw mittels Trailer anliefern. Darüber hinaus kann zu viel produzierter Wasserstoff, ebenfalls per Trailer, an weitere Tankstellen oder Kunden in der Umgebung abgegeben werden. Dadurch ist die Tankstelle sehr flexibel, kann ein großes Nachfragespektrum handhaben und bei Bedarf weitere Abnehmer mitversorgen.
Abb. 2: Die H2-Wertschöpfungskette – von der H2-Erzeugung aus Erneuerbaren bis zum Flottenbetrieb. In Orange sind die wesentlichen Bausteine hervorgehoben.
Was ist wichtig?
H2-Tankstellen sind als Keimzelle für die Energiewende und die Sektorenkopplung unerlässlich. Sie verbinden den erneuerbaren Strom mit den Kunden der Mobilität. Dabei wird häufig über das Henne-Ei-Problem diskutiert. In der Praxis zeigt sich, dass das eine überholte Diskussion ist. Die Tankstelle muss zuerst da sein. Sie ist in der Lage, Kunden auf vielfältige Weise anzuziehen. Der wesentliche Punkt dabei ist, dass sie für alle Beteiligten Planungssicherheit schafft.
Bei der Station in Gießen lief das beispielsweise so ab, dass der Betreiber Roth und alle Projektbeteiligten vom Bau der Tankstelle in ihren Netzwerken erzählten. Diese haben sehr schnell Interesse am Wasserstoff bekundet. Zwei Beispiele sind die Initiativen H2-Lernwerkstatt im Landkreis Gießen (s. Kasten 1) und das HYWHEELS Hessenflotten-Cluster aus Fulda (s. Kasten 2). Das Ingenieurbüro Emcel hat die Planung und Genehmigung der Tankstelle mitbegleitet und die Vernetzung mit diesen beiden Initiativen gefördert, die ebenfalls von Emcel mitentwickelt wurden.
Fazit
Wasserstofftankstellen treiben die Mobilitätswende an. Als direkte Kunden profitieren Flottenkunden wie die H2-Lernwerkstatt und das HYWHEELS Hessenflotten-Cluster, weil sie sich nicht selbst um eine Wasserstoffversorgung kümmern müssen. Aber auch für die Anlieferung von Wasserstoff an die Tankstelle und die Speicherung von erneuerbarer Energie sind die Tankstellen willkommene Abnehmer. Der wesentlichste Faktor in dieser Phase des H2-Markthochlaufs ist aber die Planungssicherheit, die die Wasserstofftankstellen für die Energie- und Antriebswende bieten. Privat- und Geschäftskunden können so verlässlich ihre Flottenumstellung angehen.
Kasten 1: H2-Lernwerkstatt im Landkreis Gießen
Die Lernwerkstatt wurde vor dem Hintergrund der eCoach-Bus-Beratung, die von der LandesEnergieAgentur (LEA Hessen) angeboten wird, zusammen mit Emcel entwickelt und maßgeblich durch die Fahma Fahrzeugmanagement GmbH umgesetzt. Die Lernwerkstatt erlaubt den Busunternehmen im Landkreis Gießen und Umgebung einen niederschwelligen Einstieg in den elektrischen ÖPNV, der mit einem relativ geringen finanziellen Risiko verbunden ist. Sie können Erfahrungen mit Wasserstoffbussen sammeln, und gleichzeitig lernen die Bürger den Wasserstoff-ÖPNV kennen.
Die Projekte H2-Tankstelle und H2-Lernwerkstatt verbinden sich zu beiderseitigem Vorteil: Die Tankstelle ermöglicht den Busbetrieb und bietet der Lernwerkstatt eine gesicherte Wasserstoffquelle, und die Lernwerkstatt verschafft der Tankstelle Stammkunden mit entsprechendem Wasserstoffbedarf.
Kasten 2: HYWHEELS Hessenflotten-Cluster
Das HYWHEELS Hessenflotten-Cluster ist aus einer Studie hervorgegangen, mit der 2020/21 in der Region Fulda ein Feinkonzept für wasserstoffbasierte Transportlogistik erstellt wurde. Das Cluster stellt eine zentrale Anlaufstelle für Akteure aus den Bereichen Logistik und Infrastruktur (Tankstellen sowie Service und Wartung) dar und hat sich zum Ziel gesetzt, Logistikunternehmen einen niederschwelligen Einstieg in die wasserstoffbetriebene Nutzfahrzeugmobilität zu ermöglichen. Diese profitieren von einer leichteren Beschaffung der Brennstoffzellen-Lkw, zugänglicher H2-Infrastruktur und niedrigeren finanziellen Risiken. Tankstellenbetreiber wie die H2-Tankstelle Gießen gewinnen wiederum weitere Wasserstoffabnehmer.
Abb. 3: Das HYWHEELS Hessenflotten-Cluster bietet den dargestellten Akteuren Synergieeffekte und Mehrwert durch Vernetzung und Zusammenarbeit.
Autor: Marcel Corneille, Emcel GmbH, Köln
von Sven Geitmann | Apr 16, 2024 | 2024, Deutschland, Elektromobilität, Europa, News, Politik, Wasserstoffwirtschaft
3. Förderwelle für H2-Infrastrukturmaßnahmen
Endlich ist es so weit: Die Europäische Kommission hat Mitte Februar 2024 24 deutsche IPCEI-Projekte (Important Projects of Common European Interest – wichtige Projekte von gemeinsamem europäischem Interesse) genehmigt. Im Rahmen des IPCEI Wasserstoff werden Großvorhaben entlang der gesamten Wasserstoffwertschöpfungskette gefördert – von der H2-Erzeugung über Transport- und Speicherinfrastruktur bis hin zur industriellen Nutzung.
Die Genehmigung dieser Projekte durch die Europäische Kommission erfolgt in mehreren „Wellen“. Jetzt, in der dritten Welle, waren die Infrastrukturvorhaben an der Reihe, an denen insgesamt sieben Mitgliedstaaten beteiligt sind (Deutschland, Frankreich, Italien, Niederlande, Polen, Portugal, Slowakei). Ziel ist es, insgesamt fast 3.000 Kilometer an H2-Rohrleitungen, mehr als 3,2 GW H2-Erzeugungskapazität sowie rund 370 GWh an H2-Speicherkapazität aufzubauen.
„Während sich die Versorgungskette für erneuerbaren Wasserstoff in Europa noch in der Anfangsphase befindet, wird Hy2Infra die ersten Bausteine eines integrierten und offenen Netzes für erneuerbaren Wasserstoff einrichten. Dieses IPCEI wird die ersten regionalen Infrastrukturcluster in mehreren Mitgliedstaaten schaffen und den Boden für künftige Verbindungen in ganz Europa im Einklang mit der europäischen Wasserstoffstrategie bereiten. Dies wird den Markthochlauf der Versorgung mit erneuerbarem Wasserstoff unterstützen und uns dem Ziel, Europa bis 2050 zum ersten klimaneutralen Kontinent zu machen, einen Schritt näher bringen.“
---------- Werbung ----------
Margrethe Vestager, Vizepräsidentin der Europäischen Kommission, zuständig für Wettbewerbspolitik
„Für eine erfolgreiche Einführung von erneuerbarem und kohlenstoffarmem Wasserstoff müssen alle Teile des Puzzles zusammenpassen. Im Rahmen dieses neuen wichtigen Projekts von gemeinsamem europäischem Interesse werden 32 Unternehmen, darunter 5 KMU, in die Wasserstoffinfrastruktur investieren, wobei sich die privaten und öffentlichen Investitionen auf insgesamt mehr als 12 Milliarden Euro belaufen, um Angebot und Nachfrage nach Wasserstoff aufeinander abzustimmen. Es bietet der Industrie mehr Möglichkeiten, ihre Aktivitäten zu dekarbonisieren und gleichzeitig ihre Wettbewerbsfähigkeit zu steigern und Arbeitsplätze zu schaffen.“
---------- Werbung ----------
EU-Kommissar Thierry Breton
„Ich freue mich, dass das Warten auf die europäische Fördergenehmigung ein Ende hat. Wir sind damit einen wichtigen Schritt in Richtung Umsetzung unseres Wasserstoffprojektes gekommen. Jetzt hoffe ich, dass wir eine baldige Fördermittelzusage vom Bund bekommen, damit wir eine gute Grundlage für die finale Investitionsentscheidung in unseren Gremien haben.“
EWE-Vorstandsvorsitzender Stefan Dohler
Erwartet wird, dass die Mitgliedstaaten bis zu 6,9 Mrd. Euro an öffentlichen Mitteln bereitstellen werden, die dann 5,4 Mrd. Euro an privaten Investitionen freisetzen sollen. Insgesamt beteiligen sich an den 33 Projekten 32 Firmen, darunter auch kleine und mittlere Unternehmen (KMU). Das IPCEI Hy2Infra soll damit „einen Beitrag zur Erreichung der Ziele des Europäischen Green Deal und des REPowerEU-Plans“ leisten, wie es aus Brüssel heißt.
Die meisten der beteiligten Firmen haben bereits lange auf das nun erfolgte Startsignal gewartet, um endlich mit ihren Vorhaben beginnen zu können. Erwartet wird, dass mehrere Großelektrolyseure zwischen 2026 und 2028 und Pipelines zwischen 2027 und 2029 in Betrieb genommen werden.
Abb. 2: Hydrogenious LOHC Technologies will im Rahmen des Vorhabens Green Hydrogen@Blue Danube Benzyltoluol als Trägermaterial für einen sicheren und effizienten Transport von grünem Wasserstoff zur Versorgung industrieller Abnehmer im Donauraum erproben, Quelle: Hydrogenious, IPCEI
Das IPCEI Hy2Tech zur Entwicklung von Wasserstofftechnologien für Endverbraucher wurde am 15. Juli 2022 genehmigt. In der zweiten Welle folgte am 21. September 2022 das IPCEI Hy2Use, das sich auf Wasserstoffanwendungen im Industriesektor konzentriert.
„IPCEI Hy2Infra trägt zur Verwirklichung eines gemeinsamen Ziels bei, indem es den Aufbau einer Wasserstoffinfrastruktur unterstützt, die für die Verwirklichung der Ziele wichtiger politischer Initiativen der EU wie des Europäischen Green Deal, des REPowerEU-Plans und der EU-Wasserstoffstrategie wichtig ist.
Alle 33 Projekte des IPCEI sind sehr ehrgeizig, da sie auf die Entwicklung einer Infrastruktur abzielen, die über das hinausgeht, was der Markt derzeit bietet. Sie werden die ersten Bausteine für ein integriertes und offenes Wasserstoffnetz legen, das zu nichtdiskriminierenden Bedingungen zugänglich ist, und den Markthochlauf der Versorgung mit erneuerbarem Wasserstoff in Europa ermöglichen. Dies wird die Dekarbonisierung von Wirtschaftssektoren ermöglichen, die zur Verringerung ihrer Kohlenstoffemissionen auf Wasserstoff angewiesen sind.
Die Beihilfen für einzelne Unternehmen beschränken sich auf das notwendige und verhältnismäßige Maß und verzerren den Wettbewerb nicht unangemessen.“
Europäische Kommission