Brüssel genehmigt IPCEI-Vorhaben

Brüssel genehmigt IPCEI-Vorhaben

3. Förderwelle für H2-Infrastrukturmaßnahmen

Endlich ist es so weit: Die Europäische Kommission hat Mitte Februar 2024 24 deutsche IPCEI-Projekte (Important Projects of Common European Interest – wichtige Projekte von gemeinsamem europäischem Interesse) genehmigt. Im Rahmen des IPCEI Wasserstoff werden Großvorhaben entlang der gesamten Wasserstoffwertschöpfungskette gefördert – von der H2-Erzeugung über Transport- und Speicherinfrastruktur bis hin zur industriellen Nutzung.

Die Genehmigung dieser Projekte durch die Europäische Kommission erfolgt in mehreren „Wellen“. Jetzt, in der dritten Welle, waren die Infrastrukturvorhaben an der Reihe, an denen insgesamt sieben Mitgliedstaaten beteiligt sind (Deutschland, Frankreich, Italien, Niederlande, Polen, Portugal, Slowakei). Ziel ist es, insgesamt fast 3.000 Kilometer an H2-Rohrleitungen, mehr als 3,2 GW H2-Erzeugungskapazität sowie rund 370 GWh an H2-Speicherkapazität aufzubauen.

---------- Werbung ----------

„Während sich die Versorgungskette für erneuerbaren Wasserstoff in Europa noch in der Anfangsphase befindet, wird Hy2Infra die ersten Bausteine eines integrierten und offenen Netzes für erneuerbaren Wasserstoff einrichten. Dieses IPCEI wird die ersten regionalen Infrastrukturcluster in mehreren Mitgliedstaaten schaffen und den Boden für künftige Verbindungen in ganz Europa im Einklang mit der europäischen Wasserstoffstrategie bereiten. Dies wird den Markthochlauf der Versorgung mit erneuerbarem Wasserstoff unterstützen und uns dem Ziel, Europa bis 2050 zum ersten klimaneutralen Kontinent zu machen, einen Schritt näher bringen.“

Margrethe Vestager, Vizepräsidentin der Europäischen Kommission, zuständig für Wettbewerbspolitik

---------- Werbung ----------

„Für eine erfolgreiche Einführung von erneuerbarem und kohlenstoffarmem Wasserstoff müssen alle Teile des Puzzles zusammenpassen. Im Rahmen dieses neuen wichtigen Projekts von gemeinsamem europäischem Interesse werden 32 Unternehmen, darunter 5 KMU, in die Wasserstoffinfrastruktur investieren, wobei sich die privaten und öffentlichen Investitionen auf insgesamt mehr als 12 Milliarden Euro belaufen, um Angebot und Nachfrage nach Wasserstoff aufeinander abzustimmen. Es bietet der Industrie mehr Möglichkeiten, ihre Aktivitäten zu dekarbonisieren und gleichzeitig ihre Wettbewerbsfähigkeit zu steigern und Arbeitsplätze zu schaffen.“

EU-Kommissar Thierry Breton

„Ich freue mich, dass das Warten auf die europäische Fördergenehmigung ein Ende hat. Wir sind damit einen wichtigen Schritt in Richtung Umsetzung unseres Wasserstoffprojektes gekommen. Jetzt hoffe ich, dass wir eine baldige Fördermittelzusage vom Bund bekommen, damit wir eine gute Grundlage für die finale Investitionsentscheidung in unseren Gremien haben.“

EWE-Vorstandsvorsitzender Stefan Dohler

Erwartet wird, dass die Mitgliedstaaten bis zu 6,9 Mrd. Euro an öffentlichen Mitteln bereitstellen werden, die dann 5,4 Mrd. Euro an privaten Investitionen freisetzen sollen. Insgesamt beteiligen sich an den 33 Projekten 32 Firmen, darunter auch kleine und mittlere Unternehmen (KMU). Das IPCEI Hy2Infra soll damit „einen Beitrag zur Erreichung der Ziele des Europäischen Green Deal und des REPowerEU-Plans“ leisten, wie es aus Brüssel heißt.

Die meisten der beteiligten Firmen haben bereits lange auf das nun erfolgte Startsignal gewartet, um endlich mit ihren Vorhaben beginnen zu können. Erwartet wird, dass mehrere Großelektrolyseure zwischen 2026 und 2028 und Pipelines zwischen 2027 und 2029 in Betrieb genommen werden.



Abb. 2: Hydrogenious LOHC Technologies will im Rahmen des Vorhabens Green Hydrogen@Blue Danube Benzyltoluol als Trägermaterial für einen sicheren und effizienten Transport von grünem Wasserstoff zur Versorgung industrieller Abnehmer im Donauraum erproben,
Quelle: Hydrogenious, IPCEI

Das IPCEI Hy2Tech zur Entwicklung von Wasserstofftechnologien für Endverbraucher wurde am 15. Juli 2022 genehmigt. In der zweiten Welle folgte am 21. September 2022 das IPCEI Hy2Use, das sich auf Wasserstoffanwendungen im Industriesektor konzentriert.

„IPCEI Hy2Infra trägt zur Verwirklichung eines gemeinsamen Ziels bei, indem es den Aufbau einer Wasserstoffinfrastruktur unterstützt, die für die Verwirklichung der Ziele wichtiger politischer Initiativen der EU wie des Europäischen Green Deal, des REPowerEU-Plans und der EU-Wasserstoffstrategie wichtig ist.

Alle 33 Projekte des IPCEI sind sehr ehrgeizig, da sie auf die Entwicklung einer Infrastruktur abzielen, die über das hinausgeht, was der Markt derzeit bietet. Sie werden die ersten Bausteine für ein integriertes und offenes Wasserstoffnetz legen, das zu nichtdiskriminierenden Bedingungen zugänglich ist, und den Markthochlauf der Versorgung mit erneuerbarem Wasserstoff in Europa ermöglichen. Dies wird die Dekarbonisierung von Wirtschaftssektoren ermöglichen, die zur Verringerung ihrer Kohlenstoffemissionen auf Wasserstoff angewiesen sind.

Die Beihilfen für einzelne Unternehmen beschränken sich auf das notwendige und verhältnismäßige Maß und verzerren den Wettbewerb nicht unangemessen.“

Europäische Kommission

Wasserstoffwirtschaft nimmt Fahrt auf

Wasserstoffwirtschaft nimmt Fahrt auf

Messeführer für die Hannover Messe 2024

KI und Wasserstoff stehen im Fokus der diesjährigen Hannover Messe. Die Messevorschau der HZwei zeigt, was an Neuem auf der Hannover Messe und insbesondere der Hydrogen + Fuel Cells Europe zu sehen ist.

Die industrielle Transformation hin zur Klimaneutralität nimmt immer mehr Fahrt auf. Daher steht auch auf der Hannover Messe dieses Jahr die Dekarbonisierung der Industrie im Mittelpunkt des Interesses. Der Energiewirtschaft kommt dabei die entscheidende Rolle zu. Dabei fußt die Transformation auf zwei Treibern: künstlicher Intelligenz (KI) und Wasserstoff. Denn klar ist, dass ohne eine Wasserstoffwirtschaft keine klimaneutrale Industrie denkbar ist.

---------- Werbung ----------

Über 500 Aussteller zum Thema Wasserstoff werden auf der Hannover Messe 2024 vertreten sein. Die meisten davon im Rahmen der Hydrogen + Fuel Cells Europe in Halle 13. Auch das diesjährige Partnerland Norwegen mit seinem Motto „Pioneering the Green Industrial Transition“ stellt die kohlenstoffneutrale Produktion und neue digitale Lösungen auf seinem Wasserstoffpavillon (Stand D30) in den Fokus. Ebenfalls im Zeichen der Wasserstoffwirtschaft steht die norwegisch-deutsche Energiekonferenz „Renewable Dialogue – North Sea Energy Hub“, die am 23. April 2024 im Convention Center stattfindet. Diese Konferenz will insbesondere Geschäftsmodelle der H2-Wirtschaft konkretisieren. Wasserstoff ist auch ein zentraler Baustein der Arena zur All Electric Society. Diese Arena ist direkt angegliedert an den ZVEI-Stand in der Mitte der Halle 11, Stand B58

Welche Produkte, Dienstleistungen und Geschäftsmodelle die Wasserstoffwirtschaft heute schon anbietet, werden die Aussteller der Hydrogen + Fuel Cells Europe zeigen. Wichtige Akteure und Neuheiten stellt HZwei in dieser Messevorschau vor.

---------- Werbung ----------

Brennstoffzellentechnik

Die Proton Motor Fuel Cell GmbH präsentiert auf der Hydrogen + Fuel Cells Europe ihr Brennstoffzellensystem HyModule S4. Es ist für stationäre Anwendungen in Wohnhäusern, kleinen Industriekomplexen sowie als Notstromversorgung und Off-Grid-Stromversorgung gedacht. Das Gerät bietet einen niedrigeren Leistungsbereich von 4,1 kWel und einen Ausgangsspannungsbereich von 28 bis 55 VDC. Der H2-Versorgungsdruck beträgt 1,5 bis 7 bar. Das HyModule S4 verwendet die flüssigkeitsgekühlte BZ-Technologie HyStack 200 von Proton Motor und ist in einer Umgebungstemperatur von 5 bis 40 °C einsetzbar.


Abb. 2: Das BZ-System HyModule S4 für stationäre Anwendungen, Proton Motor, Halle 13, Stand E34

Der Automobilkonzern Honda kommt mit dem Prototyp seines neuen Brennstoffzellenmoduls nach Hannover. Das Modul ist für H2-Pkw, Nutzfahrzeuge, Baumaschinen und stationäre Stromerzeuger konzipiert. Die Brennstoffzelle in kompakten Abmessungen verfügt über eine hohe Ausgangsleistung und eine schnelle Startzeit, selbst in Umgebungen mit niedrigen Temperaturen. Für die Anwendung in Schwerlast-Nutzfahrzeugen hat Honda bereits gemeinsam mit Isuzu Motors damit begonnen, den Brennstoffzellenantrieb der nächsten Generation zu testen. Ein Prototyp ist schon auf öffentlichen Straßen unterwegs. Die Einführung eines Serienmodells ist für das Jahr 2027 geplant.


Abb. 3: Das BZ-Modul FCS-26 von Honda ist auch als saubere und leise Notstromquelle geeignet,
Honda, Halle 13, Stand C56, Foto: Honda

SFC Energy, Hersteller von Wasserstoff- und Methanol-Brennstoffzellen, hat die Leistungsklasse seiner mobilen Lösung efoy H2Genset erweitert. Die mobile Lösung ist als Alternative zu herkömmlichen Dieselgeneratoren gedacht. Sie kann für eine Vielzahl von Anwendungen eingesetzt werden, z. B. auf Baustellen, bei Events, auf Festivals und in abgelegenen Standorten mit temporärem Strombedarf.


Abb. 4: Mobiles Brennstoffzellengerät für den Einsatz auf Baustellen oder Festivals,
Foto: SFC Energy, SFC Energy, Halle 13, Stand C04

 

Ballard Power Systems hat in diesem Jahr keine eigene Präsenz auf der Hannover Messe. Das Unternehmen ist jedoch Teil einer kanadischen Delegation, die an einer gemeinsamen Präsentation von über 300 Ausstellern aus 25 Ländern auf dem Gebiet der Wasserstoff- und Brennstoffzellentechnologie beteiligt ist. Derzeit werden weltweit fast 4.000 Lkw und Busse mit Brennstoffzellen von Ballard betrieben (s. auch S. 61). Die Brennstoffzellen werden auch in mehreren Wasserstoffschiffen, Zügen und Wasserstoffprojekten mit globalen Partnern eingesetzt. Auf der Hannover Messe wird Ballard im kanadischen Pavillon zeitweise mit einem Experten für Brennstoffzellentechnologie vertreten sein.

Ballard Power, Halle 13, Stand D40

Wasserstoffbereitstellung

AEG Power Solutions stattet Wasserstoffanlagen mit Gleichstromversorgungssystemen aus. Die Elektrolyseur-Stromversorgung des Unternehmens soll stabilen Strom und Leistung über einen weiten Spannungsbereich bieten. Sie eignet sich für die Produktion von grünem Wasserstoff mit schwankenden erneuerbaren Energiequellen, da diese Elektrolyseur-Stromrichter eine hohe Gleichstromdynamik und eine hohe Effizienz bei der Netzkonformität auch im Teillastbetrieb bieten. Um den Platzbedarf, die Installationszeit und die Kosten zu reduzieren, bietet AEG Power Solutions skalierbare Plug-&-Play-Lösungen an. Diese Lösungen können bis zu acht DC-3-Module parallel umfassen, die bis zu 16 MW, 1.500 VDC und 25,6 kADC liefern.


Abb. 5: Die Plug & Play-Elektrolyseur-Stromversorgung umfasst bis zu acht DC-3-Module,
Foto: AEG Power Solutions, AEG Power Solutions, Halle 13, Stand B45

Das Unternehmen Siqens hat eine elektrochemische Wasserstoffseparations-Technologie (EHS) entwickelt. Anders als bei der Elektrolyse von Wasser will das Unternehmen damit Wasserstoff aus Biogas, Methanol oder Methan gewinnen. Das EHS-Verfahren erlaubt laut Hersteller auch die Separation von Wasserstoff aus natürlichen Vorkommen. Eine weitere Anwendung ist die Abtrennung von Wasserstoff, der über das Erdgasnetz transportiert wird.


Abb. 6: Das EcoCabinet von Siqens.
Foto: Siqens, Siqens, Halle 2, Stand A42

Brennstoffzellen- und Elektrolyseurkomponenten

Der neue Befeuchter HumidiPower von Pentair ist für PEM-Brennstoffzellen konzipiert. Er fungiert als Wärme- und Feuchtigkeitsaustauscher. Das Gerät verfügt laut Hersteller über ein patentiertes, spiralförmig gewickeltes Hohlfaserdesign, um eine effiziente Feuchtigkeitsübertragung an Luft und andere Gase zu gewährleisten. Ein geringer Druckabfall soll den Energieverbrauch minimieren. Die Ableitung der Feuchtigkeit aus dem Abgas der Brennstoffzelle dient der Wiederverwendung im Spülgas.



Abb. 7: Der HumidiPower sorgt für ausreichend Feuchtigkeit in der PEM-Brennstoffzelle,
Foto: Pentair, Pentair, Halle 13, Stand F46

Parker Hannifin zeigt auf seinem Stand die neuesten Entwicklungen im Bereich der Brennstoffzellentechnologie. An einem interaktiven Tisch können Besucher einen Blick in einen Elektrolyseurbehälter werfen und darin Komponenten von Parker suchen. Neu ist der horizontale Gasfilter Peach Gemini PuraSep. Der Filter enthält zwei Stufen und jeweils zwei Trommeln. Die obere Trommel dient der Trennung von Feststoffen und Flüssigkeiten, während die untere Trommel die Flüssigkeit auffängt. Ein Teil der Feststoffe fließt in die untere Trommel unterhalb der ersten Stufe, aber der größte Teil der Feststoffe sammelt sich auf den Elementen und auf dem Boden des oberen Fasses der ersten Stufe. Ebenfalls neu ist ein Befeuchter für BZ-Fahrzeuge und die H70-08-HRS-Schläuche für H2-Anwendungen.


Abb. 8: An einem interaktiven Tisch können Besucher einen Blick in einen Elektrolyseur-Behälter werfen und darin Komponenten von Parker suchen
Foto: Parker Hannifin, Parker Hannifin, Halle 13, Stand C55

Fischer Fuel Cell Compressor aus der Schweiz stellt Luftkompressoren für Brennstoffzellensysteme her. Deren besondere Lagertechnik soll eine hohe Leistung und Effizienz auch dann ermöglichen, wenn das Brennstoffzellensystem in großen Höhen operiert. Daher finden die Kompressoren neben den klassischen BZ-Anwendungen in Fahrzeugen, Zügen, Schiffen oder stationären Einheiten auch in der Luftfahrt ihren Platz. Die Geräte befinden sich nicht nur im Prüfbetrieb, sondern sind im mehrstündigen Flugeinsatz. Das Unternehmen hat zudem seine Produktionskapazität auf jährlich 5.000 Einheiten erweitert.


Abb. 9: Kompressoren von Fischer sind auch für die Luftfahrt geeignet,
Foto: Fischer Fuel Cell Compressor, Fischer Fuel Cell Compressor, Halle 13, Stand E46

Auch der dänische Spezialist für BZ-Kompressoren Rotrex präsentiert einen neuen Luftkompressor. Der EK40CT-2429 verfügt über eine zusätzliche Turbinen-/Expander-Ausstattung. Dieser neue Kompressor soll sich für stationäre, maritime und luftfahrttechnische Anwendungen mit großen Brennstoffzellenstapeln mit bis zu 400-kW-Ausgangsleistung eignen.


Abb. 10: Der neue Brennstoffzellenkompressor von Rotrex, 
Foto: Rotrex, Rotrex, Halle 13, Stand C15

Das Schweizer Unternehmen Celeroton Fuel Cell entwickelt und produziert ultrahochdrehende Turbokompressoren und Antriebssysteme für Brennstoffzellenanwendungen. Alle BZ-Kompressoren von Celeroton sind mit eigens entwickelten Gaslagern ausgestattet, die eine hohe Effizienz, einen ölfreien Betrieb und eine lange Lebensdauer ermöglichen sollen. Mit dem CTi-1100 präsentiert das Unternehmen die zweite Generation des Turbokompressors mit integriertem Inverter für Intralogistik, Range Extender, stationäre Anlagen und Drohnen. Ebenfalls neu ist der CTi-2001 mit integriertem 80-V-Wechselrichter, der für Intralogistik- und Off-Road-Anwendungen gedacht ist.

Zudem baut Celeroton Fuel Cell seine Produktpalette für Anwendungen mit höherer Leistung weiter aus. Der neue Turbokompressor CTE-4000 in Verbindung mit dem Wechselrichter CC-4000 soll die Luftversorgung für Brennstoffzellen mit 100 bis 200 kW Nettoleistung bereitstellen. Das neue System wird mit einem optionalen Turbinenexpander und mehreren aerodynamischen Varianten ausgestattet sein.


Abb. 11: Turbokompressor mit 100 bis 200 kW Nettoleistung,
Quelle: Celeroton Fuel Cell, Celeroton, Halle 13, Stand D49

PDC Machines aus den USA produziert Membrankompressionssysteme und Wasserstoffkompressoren. Über das neue Online-Portal MyPDCMachines können Kunden einen digitalen Betriebszwilling ihrer installierten PDC-Anlagen verwalten. Das Portal bietet den Zugriff auf wichtige Informationen wie den Gerätestatus, empfohlene Wartungspläne, Inbetriebnahmeberichte, Servicehistorie, Handbücher und Datenblätter. Zudem ermöglicht es die Bestellung von Ersatzteilen. Neu ist auch eine PDC-Toolbox, die Kunden beim Service und der Wartung von PDC-Kompressoren helfen soll.


Abb. 12: Zugang per QR-Code zum Online-Portal MyPDCMachines, 
Grafik: PDC Machines, PDC Machines, Halle 13, Stand E50/2

Der Gasanalyse-Spezialist Archigas aus Rüsselsheim präsentiert eine neuartige Messtechnologie zur feuchtigkeitsunabhängigen H2-Detektion. Dazu hat das Unternehmen in gemeinsamer Entwicklungsarbeit mit der Hochschule Rhein-Main das Wärmeleitfähigkeitsmessprinzip technisch neu umgesetzt und mit Halbleitertechnologie kombiniert. Mit unter 30 Millisekunden soll der neue Sensor von Archigas eine besonders hohe Reaktionsgeschwindigkeit aufweisen. Kommt Kondensat in Kontakt mit Sensorik zur Gasanalyse, führt dies meist zu deren sofortiger Zerstörung. Daraus, dass Wasser an den verschiedensten Stellen der H2-Prozesskette auftreten kann, können Sicherheitslücken resultieren und hohe Kosten entstehen. Das spezielle Konstruktionsdesign des Messmoduls soll daher einem Kontakt von Kondensat mit der Sensorik effektiv entgegenwirken.


Abb. 13: Da Wasserstoff hochreaktiv ist, sollte seine Detektion über die ganze Prozesskette in Echtzeit erfolgen,
Foto: Archigas, Archigas, Halle 13, Stand C16

Wasserstoffzapfsäulen

In diesem Jahr stellt Maximator Hydrogen seine neueste Generation von Wasserstoffzapfsäulen vor. Der Max Dispenser 1.5 verfügt über ein Multimedia-Display mit Touchfunktion, Mikrofon, Lautsprecher und NFC-Reader zur direkten Bezahlung. Das ermöglicht es den Nutzenden, eine genaue Betankungsanleitung zu erhalten und den Befüllstatus ihres Fahrzeuges zu sehen. Gleichzeitig dient das Display als Schnittstelle zum 24/7-Support, der Anwendern bei Fragen jederzeit zur Verfügung steht.

Dank der eingebauten Neigungserkennung wird der Dispenser bei Gefahrensituationen, wie z. B. beim Aufprall eines Fahrzeugs, in einen sicheren Zustand versetzt. Der H2-Zufluss wird gestoppt, das Entlastungsventil geöffnet und der Dispenser wird stromlos geschaltet. Die Zapfsäule kann Pkw und Schwerlastfahrzeuge mit 700 bar oder 350 bar befüllen.


Abb. 14: Dank der eingebauten Neigungserkennung wird der Dispenser bei Gefahrensituationen in einen sicheren Zustand versetzt>
Foto: Maximator Hydrogen, Maximator Hydrogen, Halle 13, Stand C26

Auch Linde stellt auf der Hydrogen + Fuel Cells Europe eine neue Wasserstoffzapfsäule vor. Der HyQ-Dispenser soll eine hohe Leistung bei der H2-Betankung bieten. Darüber hinaus soll er energieeffizient, sehr leise und für Wartungsarbeiten optimiert sein.


Abb. 15: Kartenzahlung an der neuen Linde-Wasserstoffzapfsäule,
Foto: Linde, Linde, Halle 13, Stand D55/1

Komponenten für Wasserstoffzapfsäulen

Norgren bietet unter seiner Marke Buschjost jetzt H2-Hochdruck-Magnetventile mit FM-zugelassenen Spulen für den nordamerikanischen Markt an. Damit kann das Unternehmen nun Kunden bedienen, die Wasserstofftankstellen oder Wasserstofflager für Korea, China, Europa oder die USA bauen. Die Ventile sind für einen Druck bis 1.050 bar ausgelegt.

Neu sind auch Sauerstoff-Magnetventile und -Regler, die das Unternehmen speziell nach den Industriegasnormen für Elektrolyseanwendungen entwickelt hat. Zudem bietet das Unternehmen elektrische Hochdruck-Proportionalregler für Wasserstoffzapfsäulen an.


Abb. 16: Hochdruck-Magnetventil mit FM-zugelassenen Spulen für den nordamerikanischen Markt
Foto: Norgren, Norgren, Halle 13, Stand E13

Auch Eugen Seitz aus der Schweiz kommt mit einem neuen Magnet-Hochdruckventil für Wasserstoffanwendungen nach Hannover. Das Ventil verfügt über eine integrierte Stellungsanzeige und soll somit eine optimale Systemzustandsinformation gewährleisten.



Abb. 17: Das neue H2-Magnet-Hochdruckventil mit Stellungsanzeige,
Grafik: SeitzValve, Eugen Seitz, Halle 13, Stand D50

Bürkert stellt bei seinem Messeauftritt die neue Spulentechnologie Kick and Drop in den Mittelpunkt. Diese Technologie soll in Ventilen bis zu 80 Prozent Energieeinsparung, 45 K geringere Eigenerwärmung und 200 Prozent mehr Schaltdruck im Vergleich zu herkömmlichen Spulen erreichen. Die Kick-and-Drop-Spule ist mit einer Doppelwicklung mit Anzugs- und Haltewicklung ausgestattet. Bei der Kick-and-Drop-Elektronik wird durch einen hohen Stromimpuls die Spule übererregt. Dadurch wird die benötigte Anzugskraft, welche das Ventil zum Öffnen benötigt, erzeugt. Nach rund 500 Millisekunden schaltet die Kick-and-Drop-Elektronik in einen energiesparenden Haltebetrieb. Dabei wird die Leistungsaufnahme drastisch gesenkt.



Abb. 18: Kick-and-Drop-Spule von Bürkert, 
Foto: Bürkert, Bürkert, Halle 13, Stand C30

Forschung

Das DLR-Institut für Technische Thermodynamik ist auf der Hydrogen + Fuel Cells Europe mit den Abteilungen für Energiesystemintegration und Elektrochemische Energietechnik vertreten. Das Institut entwickelt elektrochemische Reaktoren auf der Basis von Protonen-Keramiken. Protonen-Keramik-Brennstoffzellen betreibt man bei Temperaturen zwischen 400 und 600 °C. Die Elektrodenkonfiguration trennt die Dampfzufuhr von der Wasserstoffproduktion und verhindert so eine Verdünnung der beiden Ströme. Diese neuartigen Zellen sind vielseitig: Sie können elektrochemisch komprimierten Wasserstoff liefern, sie können die Protonierung von Molekülen wie CO oder CO2 in wertvolle Rohstoffe ermöglichen und sie können gleichzeitig als konventionelle Brennstoffzelle zur Energieversorgung eingesetzt werden.

In dem H2Mare-Teilprojekt PtX-Wind erforscht das DLR die Offshore-Produktion von grünem Wasserstoff und Power-to-X-Produkten. Auf der Messe stellt das Forschungsinstitut dazu die transportable Plattform XPlore vor. Diese dient der Untersuchung verschiedener Elektrolysetechnologien in Koppelung mit unterschiedlichen Synthesetechnologien.


Abb. 19: Die transportable Plattform XPlore dient für Offshore-Tests,
Grafik: DLR (basierend auf CAD von TUB-EBMS)
DLR, Halle 13, Stand B36

Das Zentrum für BrennstoffzellenTechnik (ZBT) legt bei seiner diesjährigen Messepräsenz den Schwerpunkt auf die Themen Elektrolyse und Wasserstoffderivate. Das Forschungsinstitut zeigt das Modell eines Ammoniak-Cracking-Reaktors, der in einem 3D-Metalldruck hergestellt wurde. Auch ein maßstäbliches Modell der zugehörigen Cracker-Anlage für mobile Einsätze wird zu sehen sein. Die Anlage wurde für eine Segeljacht konzipiert und inzwischen als Teil eines kompletten Ammoniak-Schiffsantriebs in der Sportjacht Ammonia Sherpa installiert.


Abb. 20: Ammoniak-Cracker-Anlage zum Einsatz auf einer Segeljacht,
Grafik: ZBT

Die Elektrolyse-Abteilung der Duisburger präsentiert in Hannover neue edelmetallfreie Membran-Elektrodeneinheiten und stellt Methoden zur Qualitätskontrolle von PEM-Elektrolyseuren vor. Im Bereich der Materialqualifizierung zeigt das ZBT Methoden zur Charakterisierung und Detektion von Schadensphänomenen an Brennstoffzellenkomponenten wie Membran-Elektrodeneinheiten oder Beschichtungen von Bipolarplatten.

ZBT, Halle 13, Stand E40

Das Fraunhofer ISE präsentiert in Hannover eine AEM-Laborelektrolysezelle. Diese ist eine Weiterentwicklung des PEM-Elektrolysezellen-Designs und soll der präzisen Charakterisierung und Qualifizierung verschiedener Komponenten wie Membranen, poröser Transportschichten und Katalysatoren dienen. Dies geschieht bei Drücken bis etwa 10 bar, erhöhten Stromdichten von über 5 A/cm² und unter präziser Temperaturkontrolle durch eine integrierte Heizung. Das Institut bietet zudem Kunden Messdienstleistungen für PEM- und AEM-Elektrolyseure und eine Analyse der Messergebnisse an, um Möglichkeiten zur Verbesserung der Kundenprodukte aufzuzeigen.

Auch ein neues Design von Membran-Elektroden-Einheiten (MEA) für die Elektrolyse und mobile Brennstoffzellen, die im Siebdruck- oder Schlitzdüsenverfahren mit kommerziell erhältlichen Materialien hergestellt wurden, ist Teil des Messeauftritts.


Abb. 21: Am Fraunhofer ISE entwickelte AEM-Laborelektrolysezelle (4cm²) zur Vermessung der Katalysatoren unter industrierelevanten Bedingungen und unter Integration von externen Magnetfeldern
Foto: Fraunhofer ISE, Halle 13, Stand C41

Auf der diesjährigen Hannover Messe stellt das Fraunhofer IMM auf dem Fraunhofer-Gemeinschafsstand eine kompakte Anlage zur Ammoniakspaltung vor. Diese kann zur dezentralen Bereitstellung von Wasserstoff, etwa für Wasserstofftankstellen, dienen. In maritimen Anwendungen kann eine solche Anlage die Versorgung von Brennstoffzellen mit Wasserstoff oder die Zufuhr von zündfähigem „Spaltgas“ für Schiffsmotoren leisten.

Thema auf der Sonderausstellungsfläche der Hydrogen + Fuel Cells Europe sind Power-to-Gas-Verfahren wie die Methanisierung in kompakten, mikrostrukturierten Reaktoren. Zudem stellt das Fraunhofer IMM Reformersysteme vor, mit denen Wasserstoffträger wie Methanol, Ethanol und synthetische Kohlenwasserstoffe für die wasserstoffbasierte stationäre und mobile Energieversorgung genutzt werden können. Für diese Reformersysteme entwickelt das Institut Katalysatoren und katalytische Beschichtungen für Mikrostrukturen.


Abb. 22: Die auf Ammoniak und Methanol basierten Systeme zur stationären und dezentralen Energieversorgung sind in Halle 2, Stand B24 zu sehen
Foto: Fraunhofer IMM, Fraunhofer-Gemeinschafsstand, Halle 2, Stand B24, Fraunhofer IMM, Halle 13, Stand C47/1, Sonderausstellungsfläche

Maschinenbau

Der Sondermaschinenbauer Graebener Maschinentechnik präsentiert eine Presse für die Herstellung von alkalischen Elektrolyseur-Stacks. Der aus Bipolarplatten bestehende, vormontierte Stack wird zunächst in die Maschine eingefahren. Dort wird er auf eine definierte Höhe zusammengedrückt, bis innerhalb des Stacks ein bestimmter Druck erreicht ist. Dieser Druck muss dann unverändert über mehrere Stunden aufrechterhalten werden. In dieser Zeit kann man den Stack mithilfe weiterer Verfahren allen notwendigen technischen Prüfungen unterziehen.

Die Stack-Presse für Elektrolyseure verfügt über eine Kraft von 800 Tonnen und kann Stacks mit einer maximalen Höhe von etwa 3 m, einem maximalen Durchmesser von 1,60 m und einem Gewicht von bis zu 12 Tonnen aufnehmen. Um während des Betriebs Montagearbeiten bei maximaler Sicherheit gewährleisten zu können, wurde bewusst auf einen hydraulischen Antrieb verzichtet. Stattdessen erfolgt das Zusammendrücken des Stacks innerhalb der Presse mit sechs servomotorisch angetriebenen Spindeleinheiten. Diese werden im Gleichlaufverfahren betrieben und sollen damit eine besonders homogene Komprimierung des Stacks ermöglichen.


Abb. 23: Die neue Stack-Presse für Elektrolyseure,
Foto: Graebener Maschinentechnik, Graebener Maschinentechnik, Halle 13, Stand E42

Der Laserschweißspezialist AWL-Techniek Holding aus den Niederlanden entwickelt Laserschweißgeräte und komplette Fertigungsstraßen für Bipolarplatten. Die neue Laser-Mikroschweißzelle kann laut Hersteller einen Fokus von 0,052 mm erreichen und damit in Hochgeschwindigkeit schweißen. Damit gelinge das anspruchsvolle Verschweißen der hauchdünnen Bipolarplatten.


Abb. 24: Im Experience Center hat AWL eine Versuchslage aufgebaut, die auch eine automatisierte Qualitätskontrolle der Bipolarplatten ermöglicht
Foto: AWL, AWL-Techniek, Halle 13, Stand F49

Das belgische Unternehmen Borit ist auf die Umform-, Schneid-, Schweiß- und Versiegelungstechnologien spezialisiert, die für die Herstellung von Bipolarplatten aus Metall für Brennstoffzellen und Zwischenverbindungen für Elektrolyseure erforderlich sind. Der Trend bei Bipolarplatten geht laut Borit zu immer dünneren Materialien in der Größenordnung von 50 bis 100 Mikrometern, um Gewicht einzusparen. Borit entwickelt die geeigneten Technoligien für solche Materialien.


Abb. 25: Bipolarplatten von Borit, 
Foto: Borit, Borit, Halle 13, Stand C19

Maceas, eine 100-prozentige Tochter von Worthmann Maschinenbau, fokussiert sich auf die Helium-Dichtheitsprüfung im Vakuum und unter Atmosphäre sowie auf die Ultraschall-Gasblasen-Detektion im Wasserbad. Das Unternehmen ist in den Bereichen Wasserstoff, Elektrolyse, Brennstoffzelle und Batteriekomponenten sowie Wärmespeichertechnologie aktiv. In Hannover zeigt das Unternehmen eine neue vollautomatische Helium-Vakuum-Dichtheitsprüfanlage für metallische und graphitische Bipolarplatten.


Abb. 26: Neue Anlage von Maceas zur Dichtheitsprüfung von Bipolarplatten,
Foto: Maceas GmbH, Maceas, Halle 13, Stand E53/1

Katalysatoren und Membranen

Pajarito Powder hat eine neue Produktionsanlage für Katalysatoren in Brennstoffzellen- und Elektrolyseur-Stacks an seinem Hauptsitz in Albuquerque im US-Bundesstaat New Mexico aufgebaut. Das Unternehmen nutzt Platingruppenmetalle in seinen Katalysatoren, um eine hohe Leistung und eine gute Stabilität und Haltbarkeit zu erreichen. Mit der neuen Produktionsanlage hat Pajarito Powder das Produktionsvolumen für BZ-Katalysatormaterial verdreifacht und die hauseigene Fertigung von Katalysatoren für die Herstellung grünen Wasserstoffs verdoppelt.


Abb. 27: Neue Produktionsanlage für wesentlich höhere Kapazität, 
Grafik: Pajarito Powder, Pajarito Powder, Halle 13, Stand A40

Der chinesische Hersteller Anhui Contango New Energy Technology zeigt in Hannover eine großformatige katalysatorbeschichtete Membran (CCM) auf verschiedenen PEM-Varianten. Die CCM soll eine hohe Stromdichte und einen niedrigen Iridium- und Platinanteil aufweisen. Contango hat vergangenes Jahr etwa 20 MW CCM an große chinesische Wasserelektrolyseure geliefert. Auch für europäische Kunden ist das Produkt laut Anbieter interessant.

Anhui Contango New Energy Technology, Halle 13, Stand A21

Carbon Energy Technology aus China produziert Kompositmembranen. Das neue Produkt des Unternehmens besteht aus einem organischen Polymer, Keramikpulver und einem Trägermaterial. Es gibt die Membranen in den Stärken 200 und 500 µm. Sie dienen der alkalischen Elektrolyse von Wasser, denn sie können effizient Wasserstoff und Sauerstoff trennen und den Elektrolyten passieren lassen.

Carbon Energy, Halle 13, Stand A42

Systemintegratoren, Betreiber und Berater

Die H2Apex mit Hauptsitz in Rostock/Laage stützt sich auf drei Säulen: Das Unternehmen ist als Systemintegrator für schlüsselfertige Wasserstoffprojekte und Mobilitätslösungen aktiv. Zudem produziert das Unternehmen grünen Wasserstoff. Die dritte Säule ist die Entwicklung und Fertigung von Druckgasspeichern zur Zwischenlagerung von Wasserstoff.


Abb. 28: Container mit H2-Druckgasspeichern, 
Grafik: H2Apex, H2Apex, Halle 13, Stand E49

Bis 2032 soll das Wasserstoffkernnetz in Betrieb gehen. Dazu sollen Erdgasleitungen auf Wasserstoff umgestellt werden und auch neue Wasserstoffleitungen entstehen. Gasnetzbetreiber Ontras bringt sich mit seinem H2-Startnetz in das Projekt ein. Es besteht unter anderem aus den beiden IPCEI-Projekten „Green Octopus Mitteldeutschland“ und „doing hydrogen“. Damit will Ontras den Grundstein für den effizienten und sicheren Wasserstofftransport in seinem Netzgebiet legen. Das ostdeutsche Unternehmen verbindet über seine Infrastruktur die gesamtdeutschen mit den europäischen Netzen – dem European Hydrogen Backbone. Über dieses soll in Skandinavien produzierter Wasserstoff nach Deutschland gelangen.


Abb. 29: Das Ontras-H2-Startnetz besteht aus den Projekten „Green Octopus Mitteldeutschland“ und „doing hydrogen“
Bild: ONTRAS H2-Startnetz, Grafik: Ontras, Ontras, Halle 13, Stand D10

Siemens verfügt über Expertise in der gesamten H2-Wertschöpfungskette. Das Unternehmen stellt diese Expertise OEM-Herstellern, Generalunternehmern, Anlagen-Betreibern, aber auch Regierungen und Kommunen bei der Umsetzung von Wasserstoffprojekten zur Verfügung. Das beginnt bei der Finanzierung und geht über das Konzeptdesign und den Aufbau bis hin zum Betrieb von Wasserstofferzeugungsanlagen und PtX-Projekten. Siemens sieht seine Stärken in den Bereichen Digitalisierung, Automatisierung und Elektrifizierung.

Siemens, Halle 13, Stand C36

Das Beratungsunternehmen PGUB Management Consultants ist in Hannover auf dem Hzwo-Gemeinschaftsstand Sachsen vertreten. PGUB berät den schwedischen Brennstoffzellenhersteller FCT Sweden. Unter dem Namen Protonik GmbH soll ab April ein eigenständiges Wasserstoff-Beratungsunternehmen aktiv werden. Dieses ist ebenfalls auf dem Gemeinschaftsstand Sachsen sowie auf dem Stand der hessischen Landesenergieagentur (LEA) zu finden.

PGUB, Halle 13, Stand B46 (HZwo) und C16 (LEA)

Autor: Dr. Jens Peter Meyer

Ceres Power mit starken Partnern

Ceres Power mit starken Partnern

Die Hauptgesellschafter Bosch und Weichai setzen bereits auf die englische Ceres Power und deren Hochtemperatur-Brennstoffzellensysteme bzw. deren Patente und Know-how. Mit der südkoreanischen Doosan Fuel Cell gibt es einen Lizenzvertrag und die Planung einer gemeinsamen BZ-Produktion. Nun kommt als Partner noch die US-Firma Delta Electronics hinzu, die einen Umsatz von ca. 23 Mrd. US-$ (über 80.000 Mitarbeiter) aufweist und kürzlich mit Ceres Power einen Lizenzvertrag über die Produktion von BZ-Stacks zur Wasserstofferzeugung im Volumen von 43 Mio. GBP abgeschlossen hat, wovon die Hälfte noch im laufenden Geschäftsjahr umsatzwirksam wird. Delta wird an seinen weltweit 200 Produktionsstätten BZ-Stacks auf Lizenzbasis für verschiedene Anwendungen und Märkte produzieren. Das Unternehmen arbeitet unter anderem für Microsoft und auch Tesla.

Für uns ist interessant zu sehen, dass auch Bloom Energy sehr erfolgreich auf Hochtemperatur-Brennstoffzellen aus eigener Entwicklung (Microgrids) setzt und damit verschiedene Energieträger wie Erdgas, Biogas und Wasserstoff nutzbar macht. Auch Bosch adressiert dieses Marktsegment – unter anderem über eine Kooperation und Lizenz von Ceres.

---------- Werbung ----------

Der Aktienkurs von Cres hat wie alle anderen börsennotierten BZ-Unternehmen in den letzten Jahren stark gelitten, scheint mir aber ein Kursniveau erreicht zu haben, auf dem man Positionen aufbauen sollte. Die Partnerschaften mit Großunternehmen lassen nachhaltig hohe Lizenzeinnahmen und Umsätze erwarten, ohne dass Ceres selbst stark in den Aufbau von Produktionskapazitäten investieren muss. Fazit: Eine gute Depotbeimischung im Bereich BZ- und H2-Technologie.

Risikohinweis

---------- Werbung ----------

Jeder Anleger sollte sich bei der Investition in Aktien immer seiner eigenen Risikoeinschätzung bewusst sein und auch an eine sinnvolle Risikostreuung denken. Die hier genannten BZ-Unternehmen bzw. Aktien stammen aus dem Bereich der Small- und Mid-Caps, das heißt, es handelt sich nicht um Standardwerte, und auch die Volatilität ist deutlich höher. Diese Analyse stellt keine Kaufempfehlung dar. Alle Informationen basieren auf öffentlich zugänglichen Quellen und stellen hinsichtlich der Bewertung ausschließlich die persönliche Meinung des Autors dar, wobei der Fokus auf einer mittel- bis langfristigen Bewertung und nicht auf kurzfristigen Gewinnen liegt. Die hier vorgestellten Aktien können im Besitz des Autors sein. Es handelt sich nicht um eine Anlage- oder Kaufempfehlung, sondern lediglich um eine unverbindliche persönliche Einschätzung – ohne Obligo.

Autor: Sven Jösting, verfasst am 15. März 2024

Ballard – Perspektiven besser als aktuelle Börsenbewertung

Ballard – Perspektiven besser als aktuelle Börsenbewertung

Der Aktienkurs von Ballard Power befindet sich auf einem Tiefstand. Die veröffentlichten Zahlen für das vierte Quartal 2023 und das Gesamtjahr 2023 zeichnen ein widersprüchliches Bild. Die vom Vorstand ausgeführten Zukunftsaussichten geben jedoch Anlass zu Optimismus. Der Umsatz stieg im vierten Quartal auf 46,8 Mio. US-Dollar – ein Plus von 132 Prozent gegenüber dem Vorjahresquartal. Der Auftragseingang lag im vierten Quartal bei beachtlichen 64,7 Mio. US-$, wobei sich der Auftragsbestand (Backlog) leicht um drei Prozent auf 130,5 Mio. US-$ verringerte, da Ballard mehr Aufträge zur Ausführung (Auslieferung) brachte. Allerdings ging der Auftragsbestand um 21,7 Mio. US-$ zurück, da es bei einem Kunden zu Verzögerungen kam. Dieser Auftrag ist nicht verloren, kann aber noch nicht bilanziert werden.

Der Gesamtumsatz lag 2023 bei 102,4 Mio. US-$, unterm Strich blieb für das Gesamtjahr ein Verlust von 0,48 US-$/Aktie. Das sind aber alles Momentaufnahmen, die die Perspektiven des Unternehmens ausblenden, denn wichtige Märkte für die Brennstoffzelle stehen erst am Anfang einer langen Phase starken Wachstums. In den USA arbeitet Ballard am Aufbau einer neuen Produktionsstätte, wie jüngst bekannt wurde, und zwar einer in Texas: Hier sollen einmal 20.000 BZ-Stacks im Jahr produziert werden, wie auch die MEA. Investitionsvolumen: 160 Mio. US-$, wobei Zuschüsse in Höhe von 40 Mio. US-$ winken. Baut man ein solches Werk, wenn man nicht an die Zukunft der eigenen Technologie und deren Markt glaubt? Mitnichten.

---------- Werbung ----------

Bei BZ-Bussen geht es richtig los

Beeindruckend ist die Entwicklung der Lieferungen und Auftragseingänge von BZ-Modulen für Busse. Ein Beispiel: Der Bushersteller Solaris begann seine Zusammenarbeit mit Ballard im Jahr 2013 mit dem Kauf von zwei Modulen. In den folgenden zehn Jahren bestellte Solaris 213 Module. Allein im Jahr 2023 waren es schon 365 Module. Laut Ballard ist dies erst der Anfang einer wahren Auftragswelle. Ähnlich sieht es beim langjährigen Kooperationspartner NFI aus: 141 Module im Jahr 2023, was erst der kleine Anfang des möglichen Auftragsvolumens sein soll, so der Kommentar.

---------- Werbung ----------

NFI vereint unter seinem Dach diverse Busmarken wie New Flyer (70 Prozent Marktanteil bei Transitbussen in den USA), aber auch Alexander Dennis (Doppeldecker) und MCI. Die Jahresproduktion beläuft sich auf 8.000 Busse. Nun wurde die Partnerschaft mit Ballard verstärkt und bereits 100 BZ-Module bestellt, die bis 2024 ausgeliefert werden sollen.

Bis zum Jahr 2037 soll es weltweit 650.000 Busse geben (Information Trends), die mit Wasserstoff fahren. 2022 waren es gerade mal 4.000. Die Preisparität von batterieelektrischen und wasserstoffbetriebenen Bussen soll im Jahr 2030 erreicht sein. Dann soll es auch genügend H2-Stationen geben und der Wasserstoffpreis paritätisch mit dem Dieselpreis sein. Ballard ist heute der eindeutige Marktführer und könnte dies auch bleiben.

China – der Riese erwacht

Das Joint Venture mit Weichai zur Produktion von BZ-Modulen für Lkw und Busse ist immer noch nicht richtig in Fahrt gekommen. Regulatorische Bedingungen und Förderprogramme sowie Initiativen einzelner Provinzen stimmen Ballard zuversichtlich, dass es bald richtig losgehen wird. 20.000 komplette BZ-Systeme (Leistungsspektrum von 50 bis 200 kW) können hier pro Jahr gebaut werden. Das entspricht einer Jahreskapazität von 2 GW an BZ-Leistung. Im Jahr 2023 wurden in China 7.500 BZ-Fahrzeuge verkauft – insgesamt gibt es dort inzwischen 7.300 BZ-Busse und 13.700 BZ-Lkw. Durch besondere Fördermaßnahmen der Provinz Shandong (wo die Produktion angesiedelt ist) soll das JV ab 2024 endlich an den Start gehen.

Aus dem Vereinigten Königreich meldet Ballard einen Auftrag über 15 MW BZ-Leistung. Es handelt sich um 150 FCmove-Module für einen namentlich nicht genannten Kunden, mit dem eine Absichtserklärung über weitere 296 FCmove-Module mit Lieferung bis März 2026 besteht. Dabei geht es um netzferne Stromerzeugung aus erneuerbaren Energien. Gleichzeitig meldet Ballard den erfolgreichen Abschluss von Testreihen für BZ-Backup-Systeme für Rechenzentren mit Caterpillar und Microsoft. Letzteres könnte die Basis für Großaufträge sein.

Bodenbildung beim Aktienkurs abgeschlossen?

Der Kursanstieg von 1 bis 2 US-$ (2018 bis 2020) auf über 40 US-$ Ende 2021 und der anschließende Kursrückgang auf aktuell rund 2,70 US-$ sollten nun wieder in einen nachhaltigen Aufschwung münden. Damit ist das gesamte H2-Ökosystem an der Börse beschrieben: Es beginnt mit technologischen Entwicklungen, die an der Börse zu einer Erwartungshaltung führen, die sich in stark steigenden Aktienkursen der börsennotierten Unternehmen der Branche ausdrückt.

Dies war Ende 2021 der Fall. Danach kam es nach und nach zu starken Kurseinbrüchen, verbunden mit einer zunehmenden Desillusionierung der Investoren. Gemäß dem Gartner-Hype-Zyklus geht die BZ- und H2-Branche jetzt in einen langfristigen Aufwärtstrend über, denn die Märkte kommen in Schwung. Bei Wasserstoff geht es um Produktion, Transport, Anwendungen, Märkte u. v. m. Dabei ist klar, dass es sich um eine disruptive neue Technologie und Industrie handelt.

Kombiniert man diese Analyse mit dem langfristigen Elliott-Wave-Chart, ergibt sich ein Bild, wonach die Ballard-Aktie jetzt ihren Boden bildet (ein aktueller Sell Off als Ende der Abwärtsspirale), gerade zu einem Zeitpunkt, wo die Anleger fast nicht mehr an den Erfolg des Unternehmens glauben wollen, was sich in dem sehr niedrigen Aktienkurs und der Börsenbewertung von ca. 0,8 Mrd. US-$ bei gleichzeitig 751 Mio. US-$ auf der Bank ausdrückt. Heute haben wir reale Zahlen, wenn man sich nur die über 1.680 Busse ansieht, die mit Ballard-Technologie fahren. Die Wasserstoffkosten pro 100 km sinken massiv, ebenso werden die Module durch Kostensenkungsprogramme und Materialoptimierungen immer wettbewerbsfähiger – auch im Vergleich zu batterieelektrischen und dieselbetriebenen Bussen.

Liegen die Kosten für Dieselkraftstoff bei durchschnittlich 240 US-$/Tag und bei der Batterie bei 16 US-$ für Strom/Tag, so liegt die Brennstoffzelle (Wasserstoff) inzwischen bei durchschnittlich 85 US-$/Tag. Man muss aber auch die Ladezeiten eines batterieelektrischen Busses berücksichtigen, während Wasserstoff und Diesel in wenigen Minuten getankt werden können. Insbesondere bei bestimmten Anwendungen (mit langen Strecken, hügeligem Gelände, Witterungseinflüssen) ist der Wasserstoffbus dem batterieelektrischen Bus überlegen.

Hinzu kommt, dass Wasserstoff immer günstiger wird. Lag der Durchschnittspreis pro kg bislang noch bei 10 Euro, so sollen in ein bis zwei Jahren durchschnittlich 6,48 Euro machbar sein, in zwei bis drei Jahren 3 bis 5 Euro/kg, und in 10 bis 15 Jahren, so sagt man, könnten es sogar nur noch 1 bis 2 $ pro kg sein. Die Gesamtkosten (Total Cost of Ownership) für den Wasserstoffbus werden massiv sinken, und Diesel wird ersetzt werden müssen.

Ballard setzt gelassen auf die Skalierung seiner Technologien und den bevorstehenden Hochlauf wichtiger Sektoren wie des Schwerlastverkehrs. Schon im laufenden Jahr 2024 soll der Auftragseingang für BZ-Module für Busse stark ansteigen, wobei sich die Umsatzerwartung mit 30 zu 70 Prozent auf das erste und zweite Halbjahr verteilt. Auftragseingänge werden sich auf den Börsenkurs auswirken, weniger die nächsten Quartalszahlen.

Fazit: Ballard ist bilanziell sehr gut aufgestellt. Mit über 750 Mio. US-$ Liquidität kann das Unternehmen sein zukünftiges Wachstum (Ausbau bestehender Kapazitäten, geografische Expansion) sehr gut aus eigener Kraft stemmen. Schlüsselmärkte wie BZ-Busse und -Lkw stehen gerade erst in den Startlöchern und werden langfristig für ein sehr hohes Wachstum des Unternehmens sorgen. Dass dies alles länger dauert als erwartet, ist für die Entwicklung eines neuen Marktes normal. Das Jahr des eigentlichen Durchbruchs (Gewinnzone) wird 2025/26 sein, da bis dahin die wichtigsten Rahmenbedingungen (u. a. Verfügbarkeit von H2-Infrastruktur) geschaffen sind und die Regulierung sowie Förderprogramme weltweit (USA, EU und Asien) im positiven Sinne voll greifen. Ballard dürfte einer der Gewinner dieser Entwicklung sein. 2024 wird von steigenden Auftragseingängen geprägt sein. Kaufen und liegen lassen. Anlagehorizont: mindestens zwei bis drei Jahre.

Risikohinweis

Jeder Anleger sollte sich bei der Investition in Aktien immer seiner eigenen Risikoeinschätzung bewusst sein und auch an eine sinnvolle Risikostreuung denken. Die hier genannten BZ-Unternehmen bzw. Aktien stammen aus dem Bereich der Small- und Mid-Caps, das heißt, es handelt sich nicht um Standardwerte, und auch die Volatilität ist deutlich höher. Diese Analyse stellt keine Kaufempfehlung dar. Alle Informationen basieren auf öffentlich zugänglichen Quellen und stellen hinsichtlich der Bewertung ausschließlich die persönliche Meinung des Autors dar, wobei der Fokus auf einer mittel- bis langfristigen Bewertung und nicht auf kurzfristigen Gewinnen liegt. Die hier vorgestellten Aktien können im Besitz des Autors sein. Es handelt sich nicht um eine Anlage- oder Kaufempfehlung, sondern lediglich um eine unverbindliche persönliche Einschätzung – ohne Obligo.

Autor: Sven Jösting, verfasst am 15. März 2024

Die Suche nach dem idealen H2-Speicher

Die Suche nach dem idealen H2-Speicher

Interview mit Thomas Korn, CEO von water stuff & sun

Das Start-up water stuff & sun hat eine neue Technologie entwickelt, die eine sichere und einfache Speicherung von Wasserstoff ermöglichen soll. Kernkomponente ist dabei ein Mikroventilsystem. Ein Druckregler steuert die Wasserstoffabgabe schrittweise von 1.000 bis hinunter zu wenigen bar. Über die Funktionsweise und die Herausforderungen hat HZwei mit Thomas Korn, dem CEO von water stuff & sun, gesprochen.

---------- Werbung ----------

HZwei: Herr Korn, das Speichern und Betanken von Wasserstoff ist ein anspruchsvolles Thema. Wie lösen Sie das Problem?

Korn: Die Speicherung von Wasserstoff in konventionellen Druckgasspeichern ist heute kompliziert und teuer. Es gibt einen Zielkonflikt zwischen Performance, Sicherheit und Kosten. Wir lösen den Zielkonflikt auf eine überraschende Weise: Anstelle weniger, großer und zylindrischer Behälter sind wir mit unserer Technologie in der Lage, die identische Wasserstoffmenge in vielen, tennisballgroßen, runden Druckbehältern aus Kohlefaser zu speichern. Durch das Mikroventilsystem aus Silizium, das in jeder Druckspeicherkugel verbaut ist, agieren alle identisch und zeitgleich, wie ein großer Tank. Der Aufwand für die Sicherheit von Wasserstoffspeichern kann signifikant reduziert werden, wenn die Energiemenge in vielen kleinen Behältern aufgeteilt ist. So sparen wir im Verhältnis zu einem Standarddrucktank fast die Hälfte des Kohlefasermaterials ein. Diese kugelförmigen Hochdruckspeicher nennen wir Sfeers.

---------- Werbung ----------

So werden Wasserstoffzellen beliebig skalierbar und in Wasserstoffbatterien flexibler Bauform integriert. Grüner Wasserstoff wird so für eine Vielzahl von mobilen und stationären Anwendungen wie Lkw, Drohnen und Flugzeugen nutzbar. Die nächste Generation dieser Energiespeicher wird im Vergleich zur Lithium-Ionen-Batterie um 95 Prozent leichter und bis zu 30-mal günstiger sein – und das bei gleicher Energiemenge, die transportiert werden kann.


Eine runde Sache: eine Sfeer-Kugel auf der EES-Fachmesse in München

Wie funktioniert die Wasserstoffbatterie?

Wasserstoffbatterien sind Niederdruck-Wasserstoffspeicher, in denen die mit bis zu 1.000 bar befüllten Sfeers integriert sind. Die Gehäuse der Wasserstoffbatterien sind für niedrige Drücke ausgelegt und können somit ideal auf vorhandene Bauräume unterschiedlichster Mobilitätsprodukte angepasst werden. Bei Wasserstoffentnahme sinkt der Druck im Gehäuse der Wasserstoffbatterie ab und aktiviert das Mikroventilsystem aller Sfeers, nachdem ein mechanisch programmierter Umgebungsdruckbereich unterschritten wird. Diese geben nun Wasserstoff frei und stellen zusammen die benötige Energiemenge eines Wasserstoffmotors oder einer Brennstoffzelle bereit.

Der Druck in der Wasserstoffbatterie steigt wieder über den Aktivierungsdrucklevel an, der durch den Fertigungsprozess der mikromechanischen Komponenten festgelegt wird. Nach dem Erreichen des Drucklevels schließen alle Mikroventile. Der Druck in der Batterie bleib konstant oder reduziert sich wieder, falls der Verbraucher weiterhin Wasserstoff entnimmt. Der Aktivierungsdruck ist auf den Versorgungsdruck der Verbraucher eingestellt. Die Wasserstoffbatterie ist quasi ein Niederdruckspeicher, jedoch mit der Kapazität eines Hochdruckspeichers.

Das Konzept erhöht die Sicherheit und reduziert gleichzeitig den Materialaufwand. Nachdem vorhandene Bauräume durch die Freiformfähigkeit ideal genutzt werden, übertreffen Wasserstoffbatterien konventionell Drucktanks hinsichtlich volumetrischer und gravimetrischer Energiespeicherdichte.

Die Mikroventiltechnik kommt aus der Satellitentechnik. Wie werden diese hergestellt?

Satelliten haben einen Gasantrieb, der die Position im Kommunikationsfenster sicherstellt. Aufgrund des wirtschaftlichen Drucks, Satelliten zunehmend kleiner und leichter zu bauen, hat man in der Industrie bereits in frühen Jahren Mikrosystemtechnik zur Steuerung von Gasen zum Einsatz gebracht. Unsere Innovation liegt in der Entwicklung von mikromechanischen Schaltelementen, die keine elektrische Energie zur Steuerung benötigen, sondern passiv durch den Umgebungsdruck gesteuert werden. Wie in der Halbleitertechnik werden hochindustrialisierte Fertigungsprozesse genutzt, die auf großen Silizium-Wafern Tausende identische Bauteile hervorbringen können. Ventile, Gaskanäle und der fünfstufige Druckregler werden in vier Schichten Silizium hergestellt und zusammengefügt. Alle Bauteile des Chips werden in eine Größe von 4 x 4 x 2,5 mm integriert.

Wie sind Sie auf die Idee der kugelförmigen Hochdruckbehälter gekommen?

Die Erfindung der Technologie stammt von Prof. Lars Stenmark, der im Ångström Labaratory der Universität Uppsala Mikrosystemtechnik unterrichtet hat und bereits frühere Erfindungen in der Luft- und Weltraumindustrie zur Anwendung brachte. Als er mir von seiner Erfindung zur Wasserstoffspeicherung erzählte, war ich Feuer und Flamme. Ein physikalischer Wasserstoffspeicher, der zwei vorhandene Technologien kombiniert und den Zielkonflikt zwischen Sicherheit, Kosten und Performance von Wasserstoffspeichern löst – da konnten wir nicht widerstehen und haben im Januar 2017 die Firma water stuff & sun gegründet.


Ein Blick ins Labor zeigt den Testaufbau zur Evaluierung des Mikrochips

Gibt es schon einen Prototyp?

Im Clean Room im Ångström-Labor in Uppsala haben wir bereits Prototypen von Schaltventilen und das Kernelement des Ventilsystems, den Druckregler, hergestellt und getestet. Wir haben ebenfalls einen Sfeers-Protoyp aus Kohlefaser in einem Berstversuch untersucht und unser Simulationsmodell mit den Ergebnissen validiert. Aktuell bauen wir den ersten Systemprototyp einer Wasserstoffbatterie mit drei Sfeer-Zellen auf. Mit dem Prototyp und dessen Einsatz in einer Mikro-Mobility-Anwendung werden wir im ersten Halbjahr 2024 den technischen Reifegrad 5 erreichen. Ab diesem Zeitpunkt beginnen wir mit mehreren Herstellern, Wasserstoffbatterien für spezifische Mobilitätsprodukte zu entwickeln und im nächsten Schritt zu industrialisieren. Das Interesse in der Industrie ist groß. So konnten wir bereits mit einem Flugzeughersteller und dem DLR ein gemeinsames Förderprojekt einreichen. Gemeinsam mit dem Partnerunternehmen Keyou entwickeln wir Wasserstoffbatterien zur Um- und Nachrüstung von Lkw und Bussen. Auch das Interesse eines Minenmaschinenherstellers und eines Lkw-OEM konnten wir bereits erregen.

Nochmals zurück zum Tankvorgang. Sie planen, die Speicher auszutauschen?

Wasserstoffbatterien müssen nicht im Fahrzeug betankt werden, sie werden an Wechselstationen oder bei kleinen Anwendungen auch mit der Hand getauscht. Entsprechend schnell und kosteneffizient kann so die Betankung stattfinden. Die leeren Wasserstoffbatterien werden an zentralen Kompressorstationen wiederbefüllt und zurück an die Wechselstationen gebracht. Das einfache Handling wird durch den niedrigen Betriebsdruck und die begrenzte Menge von H2 im Gehäuse der Wasserstoffbatterie ermöglicht. Im Vergleich zu konventionellen Hochdruck- oder Flüssigwasserstofftankstellen ist der Aufwand und die Komplexität deutlich reduziert, was die Investitions- und Betriebskosten verringert und somit auch den Wasserstoffpreis. Beispielsweise bei schweren Nutzfahrzeugen müssen einige Hundert Liter Kraftsoff-Energieäquivalent mit Wasserstoff komprimiert, gekühlt und transferiert werden. Der Vorgang kann mit der Wasserstoffbatterie mit einem einfachen Tausch innerhalb von wenigen Minuten erledigt werden.

Sie müssen einiges finanzieren. Wie sehen die nächsten Schritte für Ihre Firma aus?

Der Kapitalbedarf ist bei einem Tech-Start-up immer ein Thema, das ist ein kontinuierlicher Prozess. Gerade haben wir eine neue Finanzierungsrunde gestartet, in der unsere bereits investierenden Partner wie die Kapitalgesellschaft der Kreissparkasse Esslingen-Nürtingen, kurz ES Kapital, das Family Office Besto der Unternehmerfamilien Beyer und Stoll oder die Maschinen- und Werkzeugfabrik Nagel Interesse angemeldet haben. Ich würde von relativ bodenständigen Investoren mit regionalem Bezug sprechen, die schon seit einer frühen Phase mit dabei sind. Das frische Geld soll unter anderem in die schon angesprochene Entwicklung eines Prototyps in der mobilen Anwendung fließen. Die Rohstoffe für die Produktion wie Halbleiterchips sind alle erschwinglich. Kohlefaser und Silizium sind gut auf dem Markt zu bekommen. Das ist ein Vorteil bei der weiteren Skalierung. Wenn alles funktioniert, sehen wir bis 2025 die erste unserer Batterien in einem Fahrzeug oder Flugzeug.


Die H2-Batterie soll im Lkw einfach und schnell getauscht werden

Wann und wie wird sich der Markt für Ihre Lösung entwickeln?

Die Transformation der Energiesysteme ist im vollen Gange. Infrastruktur für erdgas- und ölbasierte Kraftstoffe und Brennstoffe wird durch Wasserstoff und flüssige Wasserstoffderivate wie Ammoniak, Methanol oder synthetische Kraftstoffe ersetzt. Der Wettlauf um die Technologieführerschaft und letztendlich Energieführerschaft hat längst begonnen. In China und den USA werden aktuell viele Milliarden Euro in Wasserstofftechnologien und deren Infrastruktur investiert, wir Europäer versuchen mit dem Green Deal dagegenzuhalten. Wasserstoffprojekte schießen wie Pilze aus dem Boden. Für uns hat der Markt bereits begonnen, wir schließen aktuell Kooperationsverträge mit ersten Herstellern von Fahrzeugen und Maschinen.

Wo sehen Sie den ersten Markt, der sich entwickeln könnte?

Wir müssen da mehrgleisig fahren und schauen deshalb auch in die USA und in den arabischen Raum. Das Land, das durch Investition die niedrigsten Wasserstoffpreise ermöglichen kann, wird viele Unternehmen und Investments anziehen. Ich hoffe, dass wir in der EU und in Deutschland mit der Greenhouse Gas Quota ein Instrument erhalten, das wettbewerbsfähig ist.

Sie haben eine Auszeichnung bei den World CleanTech StartUPs Awards, kurz WCSA 2023, gewonnen. Was hat die Jury besonders überzeugt?

Erst einmal ist der Award als Plattform ein sehr interessantes Netzwerk. Der WCSA 2023 wurde unter anderem von ACWA Power in strategischer Partnerschaft mit Dii Desert Energy und dem französischen Institut für Solarenergie CEA-INES ausgeschrieben. Die Jury hat das transformative Potenzial der Wasserstoffbatterie gesehen. Die Innovation könnte eine effiziente und flexible Infrastruktur für H2 aufbauen. Die Stromkosten zur Wasserstofferzeugung aus erneuerbaren Energien sind in Dubai sehr gering. Auch deshalb hat uns ACWA nun Ende des Jahres 2023 noch mal eingeladen, unsere Lösung vor Ort zu präsentieren. Das wird sehr spannend.

Im November wurden wir zudem bei den Global EnergyTech Awards gleich zweimal ausgezeichnet: mit dem „Best CleanTech Solution for Energy“ und zusätzlich dem Sonderpreis „Best Stand Out Performer“. Wir waren die einzigen Gewinner aus Deutschland. Das hilft.

Interviewer: Niels Hendrik Petersen


Thomas Korn

Thomas Korn arbeitet bereits seit 1998 an dem Thema Wasserstoff. Der Ingenieur hat unter anderem bei BMW an der Entwicklung der Brennstoffzelle gearbeitet. 2015 war er Mitgründer des Wasserstoff- Start-ups Keyou in München. Das Start-up water stuff & sun wurde 2017 im oberbayerischen Unterschleißheim gegründet. Die junge Firma hat derzeit 15 MitarbeiterInnen sowie eine Zweigstelle in Uppsala, Schweden.

Frustration über anhaltende Unsicherheiten

Frustration über anhaltende Unsicherheiten

HZwei: Herr Chatzimarkakis, zum Glück hat es bei der Verabschiedung der RED III nicht ganz so lange gedauert wie bei der RED II. Was sagen Sie zu dem Ergebnis?

HE: Die Verabschiedung der RED III ist ein positiver Schritt für die Wasserstoffindustrie in Europa. Sie schafft Klarheit und die Grundlage für die Förderung sowie Entwicklung von Wasserstoffprojekten und -anwendungen. Es ist jedoch wichtig, dass die Umsetzung zügig erfolgt, damit die Branche die notwendige Planungssicherheit hat, um Investitionsentscheidungen zu treffen.

---------- Werbung ----------

HZwei: Überaus große Bauchschmerzen bereitet der H2-Industrie gerade das extrem langwierige Prozedere bei den IPCEI-Vorhaben. Angeblich soll jetzt etwas in Bewegung kommen. Können Sie das bestätigen und etwas Licht ins Dunkel bringen?

HE: Ja, die Verzögerungen bei den IPCEI-Vorhaben aufgrund manchmal europäischer und manchmal nationaler Bürokratie haben die Branche besorgt. In der Summe hat es zur Konsequenz, dass Fördermittelempfänger zu lange warten müssen und entsprechend abspringen. Das birgt die Gefahr, dass Projekte zum Beispiel in den USA verwirklicht werden könnten. Wir dürfen hier also keine Zeit verlieren. Denn der schleichende De-Industrialisierungsprozess beschleunigt sich durch solche unnötigen Verzögerungen. Um dem entgegenzuwirken, konnte ich bei dem einen oder anderen Prozess Bewegung bringen. Die IPCEI-Initiativen sind entscheidend für die Entwicklung der Wasserstoffwirtschaft und die Förderung von Innovationen. Es ist wichtig, dass die bürokratischen Hürden überwunden werden, damit diese Projekte vorankommen.

---------- Werbung ----------

HZwei: Was melden Ihnen Ihre Mitglieder zurück? Bedauern sie, sich überhaupt beworben zu haben?

HE: Einige unserer Mitglieder haben Bedenken hinsichtlich der langen Verzögerungen bei den IPCEI-Projekten geäußert. Sie haben erhebliche Ressourcen in die Bewerbungen investiert und warten nun auf grünes Licht, um mit ihren Projekten voranzukommen. Es ist verständlich, dass sie über die anhaltenden Unsicherheiten frustriert sind.

HZwei: Wie lautet Ihre Empfehlung: Lieber auf Fördergelder verzichten und selber zügig starten oder weiter abwarten?

HE: Die Entscheidung, auf Fördergelder zu verzichten und eigenständig zu starten oder weiter abzuwarten, hängt von den individuellen Umständen jedes Unternehmens ab. Es ist jedoch wichtig, dass die Fördermittel so schnell, wie möglich, fließen, um die dringend benötigten Wasserstoffprojekte zu unterstützen und die Markteinführung zu beschleunigen.
Leider ist die Produktion von grünem Wasserstoff noch mit hohen Investitionskosten und wirtschaftlichen Risiken verbunden. Trotz der Fördermittel lohnt sich oft ein dauerhafter Betrieb der Anlage zur Herstellung von grünem Wasserstoff in industriellem Maßstab wirtschaftlich nicht.
Daher brauchen wir auch noch alternative Wasserstoffproduktionswege, welche wettbewerbsfähiger produzieren können.

HZwei: Schauen wir jetzt mal nach Deutschland: Auf die 37. BImSchV warten viele schon seit etlichen Jahren. Wann wird es Ihres Wissens nach eine neue Verordnung geben und was wird sie Ihres Wissens nach enthalten?

HE: Es ist bedauerlich, dass die Überarbeitung der 37. BImSchV so lange dauert. Leider habe ich keine genauen Informationen darüber, wann eine neue Verordnung erwartet wird oder was sie genau enthalten wird. Es ist jedoch entscheidend, dass die Verordnung die Bedürfnisse der Wasserstoffindustrie und die Anforderungen für eine sichere sowie effiziente Wasserstoffproduktion berücksichtigt.

HZwei: Erlauben Sie jetzt noch zwei drei Fragen zu dem offenen Brief, den Hydrogen Europe kürzlich zugeschickt bekommen hat (liegt der HZwei-Redaktion vor). Darin fordern verschiedene hochrangige BranchenvertreterInnen aus dem Projektkonsortium von JIVE, JIVE 2 und MEHRLIN eine „Verbesserung der Wasserstoffbetankungsinfrastruktur für BZ-Busse“. Ist dieser Brief bei Ihnen angekommen?

HE: Ja, der offene Brief ist bei uns angekommen. Wir nehmen die Anliegen der Branchenvertreter sehr ernst. Die Verbesserung der Wasserstoffbetankungsinfrastruktur für Brennstoffzellenbusse ist von entscheidender Bedeutung, um die Verbreitung dieser umweltfreundlichen Verkehrsmittel zu unterstützen. Hier könnte insbesondere Waste-to-Hydrogen ein Teil des Puzzles sein. Denn die Gestehungskosten, beispielweise aus Biogas, liegen bei 2-3€/kg. Zusammen mit der THG-Quote wird das schnell wirtschaftlich.

HZwei: Darin heißt es unter anderem: „Die Mitglieder des Konsortiums sind davon überzeugt, dass BZ-Busse eine praktikable Option für den öffentlichen Verkehr in ganz Europa darstellen können. Sie haben sich als zuverlässig erwiesen und werden sowohl von den Fahrgästen als auch von den Busfahrern sehr gut angenommen. Das Konsortium ist jedoch der Meinung, dass die technische Reife und die Fähigkeiten der Wasserstofftankstellen (HRS) deutlich unter den Anforderungen für den Betrieb einer BZ-Busflotte liegen. Das Konsortium ist der Ansicht, dass dies ein großes Hindernis und eine Einschränkung für die Kommerzialisierung und Verbreitung von BZ-Bussen darstellt und in der Tat eine Herausforderung für BZ-Fahrzeuge in ganz Europa und vielleicht sogar weltweit darstellen könnte.“ Sie werden in diesem Schreiben aufgefordert, die Bedeutung dieses Problems anzuerkennen und so schnell wie möglich Gespräche mit der Industrie über mögliche Lösungen zu führen. Was sagen Sie dazu?

HE: Die Bedenken des Konsortiums sind berechtigt. Wir unterstützen die Bemühungen, die Wasserstoffbetankungsinfrastruktur für Brennstoffzellenbusse zu verbessern. So sind wir und unsere Mitgliedsunternehmen aktiv in der Normung zu diesem Thema – zum Beispiel bei ISO und UNECE. Es ist wichtig, dass die Industrie und die politischen Entscheidungsträger zusammenarbeiten, um Lösungen für diese Herausforderung zu finden und sicherzustellen, dass Brennstoffzellenbusse ihr volles Potenzial entfalten können.
Zudem: Ein sehr positiver Effekt zum Hochlauf der Betankung wird sicherlich von der AFIR ausgehen. Dieser verpflichtet die EU-Mitgliedstaaten, Wasserstofftankstellen auf den zentralen europäischen Achsen sowie in städtischen Knotenpunkt zu errichten. Wir haben errechnet, dass bis 2030 insgesamt bis zu 600 Tankstellen innerhalb der EU entstehen müssen. Das wird einen deutlichen Impuls für die Nutzer von Brennstoffzellenbussen geben.

HZwei: Heißt das, dass Sie sich dieser Problematik – auch im Interesse Ihrer eigenen Verbandsmitglieder – annehmen werden?

HE: Ja, Hydrogen Europe nimmt sich aktiv dieser Problematik an und setzt sich für die Verbesserung der Wasserstoffbetankungsinfrastruktur ein. Wir sind bestrebt, die Interessen unserer Verbandsmitglieder zu vertreten und die Entwicklung der gesamten Wasserstoffwirtschaft in Europa voranzutreiben.

Interviewer: Sven Geitmann

Auszüge aus dem offenen Brief

„Wenn es etwas gibt, was der kommerzielle Betrieb von Bussen in öffentlichen Verkehrssystemen braucht, dann ist es ein HRS, das für den Betrieb verfügbar und zuverlässig ist. Dieser grundlegende Standard wird bei den derzeitigen Betankungseinheiten häufig nicht erfüllt. An fast allen Standorten der Projekte JIVE, JIVE 2 und MEHRLIN kam es zu erheblichen Ausfallzeiten der Betankungseinheit, so dass die Fahrzeuge nicht einsatzfähig waren.“

„Es hat viele Monate gedauert, um einen zuverlässigen und robusten Tankvorgang zu erreichen, wobei zahlreiche Störungen während des Tankvorgangs auftraten, die der Lieferant nur langsam beheben konnte – und das trotz der inhärenten Redundanz der Station.“

„Die Mitglieder des Konsortiums berichten über Probleme mit einer Reihe recht grundlegender Geräte zur Wasserstoffförderung. Angesichts der umfangreichen Erfahrungen der Industrie mit der Handhabung von Wasserstoff sind diese Probleme überraschend.“

„Darüber hinaus ähneln die Probleme und Kommentare denen, die bei zahlreichen Projekten aus den frühen 2000er Jahren berichtet wurden. Es ist bemerkenswert und sehr enttäuschend, dass die Leistung der Kompressoren für die Betankung von BZ-Bussen offenbar noch nicht das für den kommerziellen Flottenbetrieb erforderliche Niveau erreicht hat.“

„Die Projektstandorte haben berichtet, dass die Datenübertragung häufig unterbrochen wird, was zum Abbruch der Betankung oder zu einer längeren Betankungszeit als erforderlich führt. Der Sensor in der Düse ist nicht robust. Wenn er kaputtgeht, muss die gesamte Zapfpistole ersetzt werden, was ca. 10.000 € kostet.“

„Bei der Umstellung von Tanks des Typs 3 auf Tanks des Typs 4 in den Bussen traten erhebliche Probleme auf. Zumindest teilweise scheint dies darauf zurückzuführen zu sein, dass die Informationen von den Busherstellern nicht an die HRS-OEMs übermittelt wurden.“

„Zwar wurden Ziele wie eine HRS-Verfügbarkeit von mehr als 98 % bereits erreicht, z. B. von einigen Standorten des CHIC-Projekts, doch war eine Leistung auf diesem Niveau nur mit einem erheblichen Einsatz von Personal und finanziellen Mitteln, d. h. mit höheren Kosten, zu erreichen.“

„Gewerbliche Betreiber verlangen, dass ihre Fahrzeuge verfügbar sind, wann und wo sie gebraucht werden (und zu vertretbaren Betriebskosten). Dies ist vielleicht die wichtigste Variable, auf die die Betreiber achten, wenn sie Investitionen in neue oder zusätzliche Fahrzeuge in Erwägung ziehen. Wenn sie nicht sicher sein können, dass die Fahrzeuge bei Bedarf betankt werden können, werden alle Pläne für eine Flottenerweiterung von BZ-Bussen nicht umgesetzt werden.“

„Wir sind der Meinung, dass die anhaltenden Probleme mit der Betankung gelöst werden müssen, wenn die 407 Millionen Euro, die in den letzten 20 Jahren aus öffentlichen EU-Mitteln und den entsprechenden Mitteln von Industrie, Busbetreibern, KMU und Forschungspartnern in BZ-Busse investiert wurden, zu einer nachhaltigen Kommerzialisierung der Busse führen sollen. Wir sind davon überzeugt, dass sie kurzfristig gelöst werden können, wenn man ihnen die nötige Aufmerksamkeit und die erforderlichen Ressourcen zukommen lässt.“

preloader