Sauberer Wasserstoff aus Müll und Plastik

Sauberer Wasserstoff aus Müll und Plastik

Schwedischer Hafen auf Insel Tjörn will komplett grün werden

Kunststoffabfälle sind ein riesiges Problem für die Umwelt. Eines, das mit jedem Tag wächst und wächst. Auf der anderen Seite benötigt die globale Energiewende sauberen Wasserstoff in großen Mengen. Warum also nicht die Abfälle für eine CO2-neutrale Erzeugung des Gases nutzen? Innovative Technologien und Projekte zeigen, wie es gehen könnte. Sie leisten Pionierarbeit und lösen mehrere Probleme zugleich.

Die Gemeinde Tjörn nördlich von Göteborg an der schwedischen Westküste hat einen Beschluss gefällt: Sie will eine lokale Energieerzeugung frei von fossilen Brennstoffen. Helfen soll dabei die Technologie von Boson Energy aus Luxemburg. Diese nutzt nicht verwertbare Abfälle, um diese in Ökostrom und grünes Methanol umzuwandeln. Grünes Methanol könnte der Chemie- und Kunststoffindustrie helfen, fossile Brennstoffe zu ersetzen.

Der Clou: Sowohl der Strom als auch der Kraftstoff für den Hafen sollen demnach CO2-negativ sein, weil das Verfahren von Boson Energy sowohl eine CO2-Abscheidung als auch die -Speicherung ermöglicht. Der einzige feste Rückstand aus dem Prozess bleibt eine Art Schlacke. Diese kann jedoch als umweltfreundliches Füllmaterial verwendet oder zu klimafreundlichem Dämmmaterial weiterverarbeitet werden.

---------- Werbung ----------

Die erste Phase des Projekts erforderte eine Investition von 100 Mio. Euro – die Gesamtkosten werden sich auf rund 450 Mio. Euro belaufen. „Das Projekt in Wallhamn wird es uns ermöglichen, alle Aspekte unserer Vision der Kreislaufwirtschaft zu demonstrieren“, freut sich Jan Grimbrandt, Gründer und CEO Boson Energy. Der Schwede ist ein grüner Pionier. Er war bereits Mitgründer des Unternehmens Mobotec Europe, das Kohlekraftwerke für einen Betrieb mit 100 Prozent Biomasse ertüchtigte. 2008 gründete Grimbrandt die Firma Boson Energy.

Einsatz im Hafen und in Gewächshäusern

---------- Werbung ----------

Das Projekt auf der Insel Tjörn soll nun einen Umstieg für Bereiche und Anwendungen aufzeigen, in denen eine Dekarbonisierung ebenfalls schwierig ist: bei Treibstoffen für Schiffe, in der chemischen Industrie, bei Düngemitteln sowie bei der lokalen Lebensmittelproduktion in Gewächshäusern. „Dieses Projekt wird ein globales Vorbild sein“, ist sich Grimbrandt sicher. Und das nicht nur für Häfen, sondern auch für Städte und Inseln, die mit Problemen des Energiezugangs konfrontiert sind und weg von fossilen Brennstoffen wollen.


Abb. 2: Unterzeichnung der Absichtserklärung – Torbjörn Wedebrand, CEO Wallhamn AB, und Jan Grimbrandt, CEO Boson Energy SA (r.)

Boson Energy hat bereits eine Vereinbarung mit dem Startup Ecopromt unterzeichnet. In einer Kooperation soll ein Gewächshaus für Gemüseanbau in der Nähe des Hafens entstehen. Das von Ecopromt entwickelte Konzept sieht dabei eine zirkuläre und flächeneffiziente Gemüseproduktion vor – ohne Auswirkungen auf die Umwelt. Durch die Errichtung der Anbaufläche in der Nähe der Anlage von Boson Energy können Strom, Kohlendioxid und Kühlung direkt an die Anlage geliefert werden, was einen energie- und klimaeffizienten Anbau ermöglicht.

Geplant sind 70.000 t grünes Methanol aus eigenem Kohlenstoffdioxid und aus Wasserstoff sowie etwa 60.000 m2 autonome Gewächshausanlagen, die mit Strom, grünem CO2 sowie Wärme und Kälte versorgt werden. Zusätzlich wird thermische Energie an die Hafengebäude geliefert. Das in den Brennstoffzellen erzeugte Wasser wird ebenfalls zurückgewonnen und wieder genutzt – in einem geschlossenen Kreislauf.

Die Gemeinde hat unter anderem geeignete Industriegrundstücke in Gebieten geprüft, die von dem laufenden detaillierten Planungsverfahren erfasst werden. Sie profitiert immerhin von einer fossilfreien Energieversorgung und von nachhaltigen Arbeitsplätzen.

Eines der Ziele ist, dass der Umschlaghafen Wallhamn durch dieses Vorhaben zum ersten CO2-negativen Hafen der Welt werden soll. Die Erzeugung von lokalem Strom bedeutet, dass alle Fahrzeuge im Hafen in Zukunft sauber aufgeladen und betrieben werden. Auch Landstromanschlüsse für ankommende Schiffe sollen angeboten werden. Grimbrandt rechnet mit insgesamt 30 bis 40 GWh Ökostrom aus Wasserstoff. Dieser deckt die DC-DC-Ladung von Schwerlastschiffen, den Strom für den Hafenbetrieb sowie die Landstromanschlüsse und sorgt für die Glättung von Spitzenlastzeiten im Betrieb durch ein Energiemanagement.

Aus Müll wird grüner Wasserstoff

Aber nicht nur Grimbrandt und Boson Energy arbeiten daran, sauberen Wasserstoff aus Abfall zu produzieren. Mithilfe der technischen Lösung der Firma H2-Enterprises aus New York soll organischer Müll, einschließlich Kunststoffen, Klärschlamm und vorhandenem Deponiemüll, durch Verbrennung in sauberen Wasserstoff gewandelt werden. H2-Enterprises nutzt dabei ein H2-Thermolyse-Verfahren, das Kunststoffe und organischen Müll bei hohen Temperaturen unter Ausschluss von Sauerstoff in Wasserstoff und CO2 umwandelt.

Es handelt sich hierbei um einen zweistufigen Prozess: Erst erfolgt die Dampfreformierung, anschließend folgt die Wassergas-Shift-Reaktion und die Trennung von H2 und CO2. Am Ende des Prozesses wird der Wasserstoff nach Bedarf noch gereinigt. Das abgeschiedene CO2 kann für kommerzielle Zwecke genutzt oder gespeichert werden. Ebenso wie das aus dem Prozess gewonnene, saubere H2-Gas als flüssiger organischer Wasserstoffträger (LOHC) transportiert und gespeichert werden kann. Das grüne Gas kann so an internationale Abnehmer verkauft werden – oder wird zu synthetischen Kraftstoffen wie e-Diesel oder nachhaltigem Flugzeugtreibstoff (SAF) weiterverarbeitet.

100 kg H2 aus einer Tonne Abfall

Diese Lösung klingt fast zu schön, um wahr zu sein. Denn sie leistet gleich von zwei Seiten einen Beitrag für den globalen Umweltschutz: Zur Beseitigung von Müll und für die Produktion von grünem H2. Beides ist dringend nötig. Laut der Internationalen Energieagentur IEA könnte der weltweite Bedarf an Wasserstoff im Jahr 2030 bei über 200 Mio. t überschreiten, um die vereinbarten Klimaziele zu erreichen. Neben der schieren Menge muss der emissionsfreie Wasserstoff jedoch auch zu einem wettbewerbsfähigen Preis angeboten werden.

Auf der anderen Seite kalkuliert die Weltbank, dass jährlich rund 2 Mrd. t Hausmüll anfallen, die nicht oder nur teilweise auf umweltverträgliche Weise entsorgt werden. Zum Vergleich: Dies entspricht etwa einem Drittel der gesamten Müllentsorgung. Jede Minute wird eine Müllmenge der Kapazität eines Müllwagens ins Meer gekippt. Bei diesem Tempo gibt es bis 2050 demnach mehr Plastik als Fische im Meer. Schon aus einer Tonne Abfall ließen sich 100 kg H2 gewinnen.

Autor: Niels Hendrik Petersen

 

 

H2-Variante des E-Mopeds „Pocket Rocket“

H2-Variante des E-Mopeds „Pocket Rocket“

Mit BZ-Range-Extender die Reichweite verdoppeln

 

Ein elektrisches Leichtkraftrad mit 150 km Reichweite und Betankung in unter einer Minute? Dass dies mit Brennstoffzelle und Wasserstofftank als Range Extender machbar ist, zeigt die gemeinsame Studie „Pocket Rocket H2“ der Dualen Hochschule Baden-Württemberg und der SOL Motors GmbH aus Böblingen.

Elektrofahrräder, Elektroroller und E-Scooter sind bereits Teil des Stadtbildes geworden. Bei kleinen Motorrädern, sogenannten Leichtkrafträdern, ist der Aufbau im Elektrosektor gerade im Gange. Mit einem auffälligen Design kommt im Herbst dieses Jahres die Pocket Rocket des Start-ups SOL Motors auf den Markt.

Die batterieelektrische Version gibt es in zwei Varianten mit Höchstgeschwindigkeiten von 45 km/h oder 80 km/h. In beiden Fällen liegt die Reichweite bei 50 bis 80 km und es dauert etwa drei Stunden, bis die Batterie an einer Haushaltssteckdose aufgeladen ist. Nutzt man die Pocket Rocket für die tägliche Fahrt zur Arbeit, reicht das in der Regel völlig aus.

---------- Werbung ----------

Allerdings gibt es auch Fälle, in denen man sich eine möglichst kurze Ladezeit und eine hohe Reichweite wünscht. Beispielsweise kann man sich einen Einsatz von Leichtkrafträdern im Katastrophenschutz vorstellen; neben einer hohen Reichweite wird hierfür eine durchgehende Verfügbarkeit gefordert. Bedingungen, die ein Brennstoffzellenfahrzeug erfüllt.

E-Fahrzeuge: Batterie oder Brennstoffzelle?

Die große Mehrzahl der Elektrofahrzeuge weltweit, vom e-Scooter bis zum leichten Nutzfahrzeug, ist heutzutage batterieelektrisch angetrieben. Die Brennstoffzelle kommt dann ins Spiel, wenn sowohl große Leistungen als auch große Energiemengen gefragt sind. Typische Beispiele sind schwere Nutzfahrzeuge, Züge, Schiffe oder Flugzeuge. Durch die Aufteilung in Wasserstofftank und Brennstoffzelle sind bei einem BZ-Antrieb Energie(menge) und Leistung entkoppelt. Auch für kleinere Fahrzeuge ergeben sich bei einem Brennstoffzellenantrieb mehrere Freiheitsgrade für die Systemauslegung.

---------- Werbung ----------

Bei einem Brennstoffzellenantrieb kann man nicht ganz auf die Batterie verzichten, da sie zum Starten des Systems und zur Rekuperation benötigt wird. Im Zusammenspiel mit der Brennstoffzelle gibt es verschiedene Varianten für die Auslegung der Batterie: Wenn die gesamte Antriebsleistung von der Batterie bereitgestellt wird, dient die Brennstoffzelle lediglich als Range Extender. Quasi das Gegenteil davon wäre ein reiner Brennstoffzellenantrieb mit kleiner Starterbatterie, welche die Bremsenergie zwischenspeichern kann. Wenn beide Leistungsquellen zusammenarbeiten, spricht man von einem Hybridbetrieb.

Vor diesem Hintergrund stand im Projekt Pocket Rocket H2 zunächst die Auslegungsfrage im Fokus, da vergleichbare Fahrzeuge (noch) nicht auf dem Markt sind. Ausgangspunkt für die Berechnungen war der WLTP-Zyklus, der zusammen mit den Fahrzeugdaten der Pocket Rocket (Variante mit maximal 45 km/h) Leistung und Energie aus Abb. 2 liefert. Daraus resultierte die Entscheidung für eine Brennstoffzelle als Range Extender.


Bild: Ermittelter Leistungs- und Energiebedarf der Pocket Rocket (Variante mit 45 km/h max.) aus dem WLTP-Zyklus

Als Range Extender wird die Brennstoffzelle lediglich dazu verwendet, die Batterie zu laden. Damit wird praktisch nicht in die Regelung des batterieelektrischen Fahrzeugs eingegriffen. Als Range Extender muss die Brennstoffzelle lediglich eine Leistung von bis zu 1.000 W liefern; Spitzenlasten werden durch die Batterie abgedeckt. Gleichzeitig wird die Reichweite nur durch die Größe des Wasserstofftanks begrenzt. Für Brennstoffzellen in der Leistungsklasse bis 1.000 W genügt eine einfache Luftkühlung, ab rund 2,5 kW wäre eine aufwändige Wasserkühlung nötig. Als Range Extender kann die Brennstoffzelle mit konstanter Leistung betrieben werden und gleichzeitig die Batterie vor Tiefentladung schützen. Beides erhöht die Lebensdauer dieser Komponenten.

Einziger Nachteil der gewählten Konfiguration: Die Batterie muss so groß ausgelegt sein, dass auch mehrere Kilometer mit Leistungen über 1.000 W, z. B. bei Bergfahrten, möglich sind.

Demonstrator im Labor

Im Projekt wurde das System aus Batterie und BZ-Range-Extender als Labormuster aufgebaut. Dazu wurde ein PEM-Brennstoffzellensystem der Hydrogen Air Technologies Ltd. eingesetzt (Abb. 3).


Bild: Kompaktes BZ-System mit 1.000 W Dauerleistung. Rechts im Bild sind die Ventilatoren für die Luftkühlung zu sehen. Der Schlauch zwischen den Ventilatoren dient zum Purgen mit Stickstoff.

Das System mit seinen 65 Zellen wird mit einfachen, drehzahlgeregelten Ventilatoren luftgekühlt und liefert die beschriebene maximale elektrische Leistung von 1.000 W. Die Spannung variiert, abhängig von der Leistung, zwischen 65 V (Leerlauf) und 35 V (maximale Leistung). Es handelt sich um ein sogenanntes Dead-End-System, d. h., es wird nur so viel Wasserstoff zugeführt, wie auch verbraucht wird.

Im Dead-End-System sammelt sich auf der Wasserstoffseite (Anode) durch Diffusion relativ schnell Stickstoff an, der über ein Spülventil abgelassen werden muss (purgen). Purgen verringert den Wirkungsgrad des Systems, da auch unverbrauchter Wasserstoff ausgetragen wird. Das untersuchte Brennstoffzellensystem hat bei 1.000 W einen Wirkungsgrad von etwa 35 Prozent. Umgerechnet auf den Wasserstoffverbrauch entspricht dies 85 g Wasserstoff pro Stunde.

Elektrische Verschaltung

Der Einsatz des Brennstoffzellensystems als Range Extender erlaubt eine sehr einfache elektrische Verschaltung. Wie in Abbildung 4 dargestellt, muss lediglich ein DC-DC-Wandler die Ausgangsspannung der Brennstoffzelle auf die Ladeschlussspannung der Batterie anpassen. Die Batterie kann dann kontinuierlich mit konstanter Spannung geladen werden. Die Regelung der Brennstoffzelle passt deren Ausgangsleistung an den aktuellen Ladestrom an. Das Steuergerät des Antriebs bleibt von dem Ladevorgang durch die Brennstoffzelle unberührt.


Bild: Verschaltung der elektrischen Komponenten der Brennstoffzelle (BZ) als Range Extender

Durch das Brennstoffzellensystem kann die Batterie bei gleicher Motorleistung von 2,5 kWh auf 0,35 kWh verkleinert werden. Die Reichweite wird dann prinzipiell nur durch das Tankvolumen, sprich die Menge an Wasserstoff im Tank, begrenzt. Der Leistungsbedarf mittels WLTP-Zyklus ergibt zusammen mit dem Systemwirkungsgrad einen Wasserstoffverbrauch von ca. 200 g auf 100 km. Mit 1 kg Wasserstoff könnte die Pocket Rocket in der Brennstoffzellenversion also 500 km weit fahren!

Sorgenkind Wasserstoffdrucktank

Leider ist die Speicherung von Wasserstoff für mobile Anwendungen noch unbefriedigend. Wasserstoff ist rund 14-mal leichter als Luft. Um also signifikante H2-Mengen zu speichern, muss dieser komprimiert werden. Aber selbst bei einem Druck von 700 bar nimmt 1 kg Wasserstoff ein Volumen von fast 40 Liter ein. Zusätzlich bringt ein 700-bar-Drucktank, der 1 kg Wasserstoff speichert, ein Gewicht von rund 24 kg auf die Waage. Umso erstaunlicher, dass die Pocket Rocket H2 gegenüber dem batterieelektrischen Fahrzeug nur etwa 2 kg schwerer wird – und das bei doppelter Reichweite.

Durch die Verkleinerung der Batterie von 2,5 kWh auf 0,35 kWh verringert sich deren Gewicht von rund 14 kg auf nur noch etwa 2 kg. In Summe ergeben sich etwa 16 kg, die sich auf Brennstoffzelle (4 kg), Tank (9 kg), Batterie (2 kg) und weitere Komponenten (1 kg) wie DC-DC-Steller und Verbindungskomponenten verteilen. Der H2-Drucktank ist dabei nicht nur die größte, sondern auch die schwerste Komponente. Das liegt vor allem an den hohen Sicherheitsanforderungen für den Einsatz im Straßenverkehr.

Hochdrucktanks für Wasserstoff bestehen heutzutage aus einem Kunststoffliner, der mit in Epoxydharz getränkten Kohlefasern umwickelt ist. Um die gewünschten Anforderungen, wie zum Beispiel einen 2,35-fachen Berstdruck, zu erreichen, ist die Kohlefaserschicht mehrere Zentimeter dick. Fertigungsbedingt können so nur runde oder zylindrische Tanks hergestellt werden. Für die Unterbringung am Rahmen der Pocket Rocket würde man sich allerdings flexiblere Tankgeometrien wünschen, die aktuell allerdings jeden Kostenrahmen sprengen würden.

Zum Abschluss des Projektes wurde in einem CAD-Modell die Unterbringung der Komponenten des Range Extenders am Rahmen der Pocket Rocket untersucht (Bild 5).


Bild
: Studie zur Anordnung der einzelnen Komponenten des BZ-Range-Extenders am Rahmen der Pocket Rocket H2. Den größten Bauraum nehmen die Drucktanks für Wasserstoff ein.

Die Batterie, die sich in der batterieelektrischen Variante im oberen Querrohr befindet, ist nun deutlich kleiner und könnte in eines der V-Rohre wandern. Wasserstoff würde in dieser Variante in zwei Tanks, sowohl im Querrohr als auch in einem separaten Tank, gespeichert. Allerdings ließen sich im oberen Tank bereits fast die gesamten 350 g Wasserstoff speichern, die für eine Verdopplung der Reichweite benötigt werden. Der zweite Tank würde nur zum Einsatz kommen, wenn Wasserstoff bei „nur“ 350 bar gespeichert werden soll. Übrigens dauert die Betankung mit 6 kg Wasserstoff bei Pkws vier Minuten. Die Pocket Rocket H2 wäre also in etwa 14 Sekunden wieder vollgetankt.

Fazit und Ausblick

Im Projekt Pocket Rocket H2 wurde gezeigt, wie sich durch Brennstoffzelle und Wasserstofftank die Reichweite eines Leichtkraftrads verdoppeln lässt. Statt langer Ladezeiten lässt sich das „Wasserstoffmotorrad“ in kürzester Zeit betanken. Überraschend ist, dass trotz relativ schwerem H2-Tank das Gesamtgewicht der Pocket Rocket in der BZ-Variante reduziert werden kann, da die Batterie deutlich kleiner ausgelegt wird. Schließlich stellt die elektrische Verschaltung als Range Extender einen minimalen Eingriff in das Regelungssystem dar und eignet sich besonders für die „Nachrüstung“ von batterieelektrischen Fahrzeugen. An der DHBW Horb wurden die Projektergebnisse bereits auf die Auslegung von Transportdrohnen mit Brennstoffzellenantrieb übertragen.

In einem Nachfolgeprojekt werden Laboraufbau und Pocket Rocket zu einem echten Wasserstoffleichtkraftrad zusammengeführt. Das Projekt „Pocket Rocket H2“ wurde im Rahmen der Innovation Challenge 2021 vom Ministerium für Wissenschaft, Forschung und Kunst des Landes Baden-Württemberg gefördert.

ICM Innovation Challenge

Der Innovationscampus Mobilität der Zukunft, eine gemeinsame Initiative des Karlsruher Instituts für Technologie (KIT) und der Universität Stuttgart, stärkt mit seiner ersten Innovation Challenge Mobilität und Produktion den direkten Austausch mit der Industrie. Das schnelle und unkomplizierte Förderformat für explorative Innovationsvorhaben hat im November 2021 Wirtschaft und Wissenschaft zusammengebracht, um sieben Forschungsfragen in den Feldern Mobilität und Produktion gemeinsam zu lösen. Die Challenges kamen von innovationsorientierten Unternehmen, die Lösungsansätze von den teilnehmenden Hochschulen und die Förderung im schnellen und kompakten Förderformat vom InnovationsCampus. Das neuartige Förderformat ist speziell auf kleine Unternehmen zugeschnitten: In der Ausschreibungsrunde 2021 wurden Konsortien von Unternehmen und Forschungseinrichtungen mit mehr als 900.000 Euro gefördert.

Autor:
Prof. Dr. Volker P. Schulz, Volker.Schulz@dhbw-mannheim.de
Kai Tornow, DHBW Mannheim
Prof. Wolf Burger, DHBW Stuttgart
Manuel Messmer, SOL Motors GmbH

Neue Anlagen zur Offshore-Wasseraufbereitung

Neue Anlagen zur Offshore-Wasseraufbereitung

Der Technikkonzern Bosch verstärkt sein Engagement bei der Wasseraufbereitung für grünen Wasserstoff. Neben dem Prinzip der Umkehrosmose entwickelt Bosch an den Standorten Renningen, Stuttgart-Feuerbach und Budweis neue Anlagen, die besonders robust und wartungsarm sind und speziell für abgelegene Gebiete und Offshore-Standorte geeignet sind.

Über thermische und elektrochemische Verfahren entziehen diese Anlagen dem Wasser Mineralien. Dank dieses Aufbereitungsprozesses ohne Filtermedien sei es für Betreiber möglich, komplett auf Chemikalien zu verzichten. Erste externe Pilotprojekte sollen im Laufe dieses Jahres aufgenommen werden. Der Marktstart der Anlagen ist für 2024 geplant.

Die Wasseraufbereitung ist in der H2-Wertschöpfungskette das erste und grundlegende Bindeglied, denn die Elektrolyseure benötigen in der Regel hochreines Wasser. Mithilfe der neuen Technologie wird die Wasseraufbereitung auch in entlegenen Gebieten wirtschaftlich und umweltschonend realisiert, erklärte Stefan Hartung, Vorsitzender der Bosch-Geschäftsführung.

---------- Werbung ----------
Uni Stuttgart ordert BZ-Kraftwerk

Uni Stuttgart ordert BZ-Kraftwerk

Die Universität Stuttgart hat ein Brennstoffzellenkraftwerk beim bayerischen Hersteller Proton Motor Fuel Cell bestellt. Die sogenannte HyShelter-Anlage verfügt über eine Leistung von bis zu 240 kW. Die stationäre und netzautarke H2-Brennstoffzelle soll in ein industrielles Forschungsgelände integriert werden und dort ab dem zweiten Quartal 2024 Strom erzeugen und ins Netz einspeisen.

Das Bundesministerium für Bildung und Forschung hatte die Universität Stuttgart beauftragt, eine H2-basierte Industrieforschungsplattform aufzubauen. Insgesamt 36 Mio. Euro fließen über drei Jahre in diese Plattform. Ziel des sogenannten WAVE-H2-Projektes ist es, die Reduzierung von CO2-Emissionen im Industriesektor zu forcieren. Zur Universität gehört der Bereich „Energietechnik der Zukunft“, bei dem das Potenzial von Wasserstoff zur durchgängigen Dekarbonisierung einen Schwerpunkt bildet.

Das Container-Kraftwerk kann mobile Betankungseinheiten für Lastwagen mit Strom versorgen. Typische Einsatzbereiche für die HyShelter-Anlage sind netzunabhängige oder auch netzgebundene Installationen, um eine sichere Energieversorgung zu gewährleisten, bei denen keine oder nur eine unzureichende elektrische Infrastruktur vorhanden ist oder Leistungsentnahme aus dem Netz reduziert werden soll.

---------- Werbung ----------
H2 aus Meerwasser

H2 aus Meerwasser

In Australien ist es Forschern gelungen, Wasserstoff direkt aus Meerwasser herzustellen. Dafür verwendeten sie ein neues Katalysatormaterial, das sehr viel beständiger gegen Salzwasser ist als herkömmlich verwendete Medien. Die WissenschaftlerInnen der Universitäten Adelaide, Tianjin (Nankai) sowie der Kent State University überzogen die aus Kobaltoxid bestehenden Elektroden mit kostengünstiger Lewis-Säure, wodurch diese den Angriffen des aggressiven Salzes über ausreichend lange Zeit standhielten. Statt Eisen(III)-chlorid, Bortrifluorid und CO2 entschieden sie sich jedoch für Chrom(III)-oxid (Cr2O3) – einem weitverbreiteten Beschichtungsmaterial für Anwendungen insbesondere in der Druck- und Papierindustrie, der Pumpen- und Textilwirtschaft sowie für mechanische Dichtungssysteme.

Shizhang Qiao, Chemieingenieur an der University of Adelaide, erklärte: „Wir haben mithilfe eines solchen Katalysators in einem kommerziellen Elektrolyseur Meerwasser mit einer Effizienz von fast 100 Prozent in Sauerstoff und Wasserstoff aufgespalten.“ Wird im Vergleich dazu in konventionellen Elektrolyseuren mit ihren weitaus teureren Katalysatoren aus Platin und Iridium Süßwasser eingesetzt, werde kaum weniger Wasserstoff erzeugt, erläuterte Yao Zheng, Assistenzprofessor für Materialwissenschaften.

Chance für grünen Treibstoff

Chance für grünen Treibstoff

Der Schweizer Energiekonzern Axpo hat Wasserstoff als strategisches Wachstumsfeld definiert. Die Wasserstoffanlage beim Kraftwerk Reichenau ist eine von mehreren Anlagen bei Flusswasserkraftwerken, die Axpo in den nächsten Jahren plant. Denn die Schweiz strebt bis 2050 die Klimaneutralität an. Grüner Wasserstoff spielt dabei eine zentrale Rolle – insbesondere, um den Schwerverkehr zu dekarbonisieren.

Axpo ist der größte Ökostromerzeuger in der Schweiz. Bis 2030 will der Energiekonzern allein im Heimatmarkt Windkraftanlagen mit 3 GW und Solarkraftwerke mit 10 GW installieren. Der Versorger möchte aber auch die Zukunft des grünen Wasserstoffs in der Schweiz und in Europa mitgestalten. Denn derzeit hat die Alpenrepublik einen H2-Gesamtverbrauch von 430 GWh oder umgerechnet 130.000 Tonnen. Zum Vergleich: Das entspricht 0,2 Prozent des EU-Bedarfs. 85 Prozent des Verbrauchs entfällt dabei allein auf die Schweizer Erdöl-Raffinerie Cressier.

Erste H2-Produktion Ende 2023 in Graubünden

---------- Werbung ----------

Schon gibt es erste sichtbare Ergebnisse im neuen Strategiefeld. Axpo und Rhiienergie haben am Wasserkraftwerk Reichenau in Domat/Ems eine H2-Produktionsanlage mit einer Leistung von 2,5 MW installiert. Ende 2023 soll die Anlage den Betrieb aufnehmen. Beide Unternehmen haben zusammen mehr als umgerechnet 8,35 Mio. Euro investiert. Die im Kanton Graubünden angesiedelte Produktionsanlage wird direkt ans Wasserkraftwerk Reichenau, an dem Axpo eine Mehrheitsbeteiligung besitzt, angeschlossen.

An diesem Standort sollen mithilfe von Wasserkraft jährlich bis zu 350 Tonnen grüner Wasserstoff erzeugt werden. Zum Vergleich: Das entspricht rund 1,3 Millionen Liter Dieseltreibstoff. Der grüne Wasserstoff wird von der Produktionsanlage direkt an Tankstellen geliefert. Alternativ kann der grüne Wasserstoff auch helfen, die Energieversorgung von Industriebetrieben ökologischer zu machen.

---------- Werbung ----------

Bisher ist Wasserstoff auch in der Schweiz noch nicht als Treibstoff verbreitet. Ein Tankstellennetz befindet sich erst langsam im Aufbau, immerhin sind bereits erste H2-Lkw auf den Straßen unterwegs. Die H2-Mobilität bleibt jedoch vorerst eine Nische. Dennoch bieten die derzeit 53.000 schweren Fahrzeuge in der Schweiz ein großes Wachstumspotenzial für einen künftigen Wasserstoffmarkt in den nächsten Jahren. Ein Bedarf von etwa 5 t H2 pro Lkw und Jahr sind hier durchaus realistisch. 30 Prozent der Fahrzeuge würde dann 80.000 t H2 benötigen. Bei 5.000 Arbeitsstunden würde das eine Elektrolysekapazität von 1.000 MW voraussetzen.

Umwelt- und Heimatschutz verhindern Ausbau

Nicht immer können die innovativen Projekte am Ende erfolgreich umgesetzt werden: Der Widerstand von einigen Eidgenossen aus dem Umwelt- und Heimatschutz ist mancherorts einfach zu stark. Ein Beispiel ist die Windenergie: Die Planungszeit für Projekte ist enorm langwierig, immer wieder kommen sie nicht zustande. Resultat: In der gesamten Schweiz laufen erst 41 Windkraftanlagen. Axpo betreibt nur eine einzige davon über ihre Tochterfirma CKW.

Aber auf Windkraft allein bleibt der Protest nicht beschränkt: Anfang des Jahres wurde ein H2-Projekt an der deutsch-schweizerischen Grenze wegen privater Beschwerden von Anwohnern gestoppt (s. HZwei-Heft Apr. 2023). „Die H2-Produktionsanlage beim Wasserkraftwerk Eglisau-Glattfelden ist damit begraben“, bestätigt Axpo-CEO Christoph Brand. Drei Privatpersonen hatten geklagt. Sie wollten nicht, dass ein Lkw einmal pro Tag durch ihre Wohnsiedlung fährt und den Wasserstoff abholt, erklärt Brand. Zusätzlich hätte allerdings auch ein Kraftwerksgebäude außerhalb der geplanten Bauzone abgerissen und ersetzt werden müssen, wofür das Gericht eine Ausnahmegenehmigung verweigerte. Die H2-Anlage sollte ebenfalls 2,5 MW Leistung haben und jährlich rund 350 Tonnen grünen Wasserstoff erzeugen. Das ist nun Geschichte. Das grüne Gas muss woanders herkommen – unter anderem aus Nordeuropa.

Luka Cuderman, der als Energiemanager bei Axpo an der strategischen Ausrichtung des künftigen H2-Geschäfts arbeitet, fasste die generellen Anforderungen an einen H2-Produktionsstandort nochmal zusammen. So braucht das Kraftwerk selbst ausreichend Platz und Anschlussleistung. Außerhalb der Bauzone müssen seinen Ausführungen zufolge außerdem bestimmte Auflagen erfüllt sein (Zonenkonformität), um bauen zu dürfen. Ebenso wichtig sei die Nähe zu Endverbrauchern sowie eine gute Verkehrsanbindung. „Ein Zusatznutzen wie anfallende Abwärme ist ein weiteres Plus“, betonte Cuderman.

Der Strompreis ist dabei der bestimmende Faktor für die H2-Kosten. Der macht mehr als die Hälfte der Gesamtkosten aus. Die Investitionskosten (Capex) der Anlage wiederum sind direkt mit der Anzahl der Betriebsstunden verbunden. Eine Steigerung dieser Einsatzzeiten ist jedoch nur bedingt sinnvoll, weil der Betrieb bei hohen Stromkosten unwirtschaftlich wird. „In einem Beispiel für einen Elektrolyseur mit 2,5 MW gehen wir von 5.500 Betriebsstunden aus“, erklärte Cuderman. Die Kosten für den Betrieb der Anlage (Opex) verursachen demnach zwölf Prozent der H2-Kosten pro Kilogramm. Netzkosten fallen für den Betrieb nicht an, wenn die H2-Anlage direkt an die Stromquelle angeschlossen ist. Das ist aber nicht immer das Fall.

Fazit: Je mehr Stunden der Elektrolyseur ausgelastet werden kann, desto mehr fallen die Stromkosten auch ins Gewicht. Nah an der Vollauslastung machen die Stromkosten dann bis zu 80 Prozent der Kosten aus.

2.000 t H2 pro Jahr aus Aargau

Axpo will das Thema Wasserstoff in der Heimat weiter forcieren: Am Industriestandort Wildischachen im Kanton Aargau in der Nordschweiz soll bald eine noch größere Anlage entstehen. Die installierte Leistung ist auf bis zu 15 MW ausgelegt. Jährlich sollen rund 2.000 t Wasserstoff bereitgestellt werden können. Der für die Produktion benötigte Strom stammt vollständig aus dem nahegelegenen Flusskraftwerk Wildegg-Brugg. Mit der direkten Anbindung ans Wasserkraftwerk von Axpo wird die klimaneutrale Produktion von Wasserstoff gesichert.

Der produzierte H2 wird dann teils über eine Pipeline zur nahegelegenen Tankstelle der Firma Voegtlin-Meyer sowie teils zu weiteren Tankstellen in der Region geliefert. Der grüne Wasserstoff soll einerseits privaten Nutzern zur Verfügung stehen, andererseits sollen im Auftrag des Unternehmens PostAuto H2-Busse eingesetzt werden. Mit der produzierten H2-Menge können immerhin rund 300 Lastwagen, Postautos oder Busse pro Jahr betrieben werden.

Das Unternehmen IBB plant die Pipeline, die von der H2-Produktionsanlage bis zur Tankstelle in Wildischachen führt. Dabei soll die aus dem Elektrolyseverfahren resultierende Abwärme im Wärmenetz von benachbarten Industriebetrieben genutzt werden. Der Standort der Anlage ist somit ideal ausgewählt, da er sich unmittelbar in der Nähe des Axpo-Kraftwerks in Wildegg-Brugg und der Tankstelle von Voegtlin-Meyer befindet. Der Bau und die Inbetriebnahme der H2-Anlage ist im Verlauf des Jahres 2024 geplant. Dann soll auch die Flotte von PostAuto mit grünem Wasserstoff beliefert werden. Die Nische für grünen Treibstoff beginnt also auch in der Schweiz zu wachsen.

preloader