H2Global als Fundament für den Markthochlauf

H2Global als Fundament für den Markthochlauf

Gastartikel von Jorgo Chatzimarkakis, CEO von Hydrogen Europe

Mit dem Ziel, den weltweiten Markthochlauf für Wasserstoff voranzubringen, wurde im Juni 2021 die H2Global-Stiftung gegründet. Die Kernidee dahinter ist das sogenannte „Doppelauktionsmodell“: Dabei wird die Differenz zwischen den aktuell noch hohen Weltmarktpreisen für Wasserstoff und den niedrigeren Preisen, zu denen Wasserstoff zum Beispiel in Deutschland weiterverkauft sowie wirtschaftlich genutzt werden kann, erstattet. Dadurch soll die Industrie ermutigt werden, Wasserstoff zu importieren und in Anlagen für die Wasserstoffnutzung zu investieren. Für dieses Förderkonzept stellt die Bundesregierung rund 900 Mio. Euro zur Verfügung. Im Dezember 2021 gab die EU-Kommission der H2Global-Stiftung mit der beihilferechtlichen Genehmigung grünes Licht. Über zwei Jahre später zeigt sich, dass H2Global ein wertvolles Fundament für weitere Mechanismen geschaffen hat, die in der Lage sind, nicht nur den internationalen Wasserstoff-Markthochlauf voranzutreiben – eine (kritische) Bestandsaufnahme.

H2Global ist eine der besten Erfindungen, seit es Wasserstoff gibt. Die Idee, das Risiko für die Produktion, aber auch den Import von Wasserstoff zu senken und dabei Klimaverträge einzusetzen, ist bahnbrechend. H2Global hat dafür Maßstäbe gesetzt. Viele Politiker haben erst durch dieses Förderkonzept einen Einblick in die vielfältigen Möglichkeiten erhalten, die mit Wasserstoff einhergehen. Gleichwohl müssen wir heute eine ehrliche Bestandsaufnahme machen und uns fragen, warum H2Global nicht automatisch zu einem wichtigen Element innerhalb der Europäischen Wasserstoffbank geworden ist.

H2Global-Elemente innerhalb der Europäischen Wasserstoffbank

Die gute Nachricht ist: Seit dem Start der ersten Auktion der EU-Kommission für die Produktion von Wasserstoff Ende November 2023 steht die Europäische Wasserstoffbank in den Startlöchern. Diese hat, wie H2Global, unter anderem das Ziel, Investitionen in die erneuerbare Wasserstofferzeugung zu unterstützen. Die Bank soll also einen Beitrag zu den europäischen Wasserstoffkapazitäten für Im- und Exporte leisten.

800 Mio. Euro sind in dieser ersten Auktion in einer Pilot-Ausschreibung angeboten worden. So möchten die Verantwortlichen der EU-Kommission und der Europäischen Wasserstoffbank testen, wie reaktiv die europäische Industrie bei der Frage der erneuerbaren Wasserstofferzeugung ist. Neben der ersten Auktion war zudem wichtig, dass EU-Kommissionspräsidentin Ursula von der Leyen sich dafür stark machte, drei Mrd. Euro für diesen neuen Hebel – die Europäische Wasserstoffbank – zur Verfügung zu stellen. Dieser Betrag soll bis Frühjahr 2024 fließen, tangiert aber nur die Produktion von erneuerbarem Wasserstoff. Was ist jedoch mit der Nachfrageseite und der daraus resultierenden H2-Importstrategie für die europäische Industrie?

Hier müssen wir jetzt Elemente, wie sie aus H2Global bekannt sind, in die Europäische Wasserstoffbank integrieren. Während die Produktionsausschreibungen für erneuerbare Wasserstofferzeugung durch die Wasserstoffbank mit festen Prämien einhergehen, sollten die Nachfragemechanismen – also H2-Importe – durch einen Klimavertrag im Rahmen von Differenzverträgen unterstützt werden. Der Bezugspunkt für die Differenz könnte der CO₂-Preis sein.

Dabei sind die Erfahrungswerte aus dem H2Global-Modell sehr wichtig. Das Modell wird in Zukunft allerdings zu einem Marktmechanismus umfunktioniert. Widergespiegelt wird also die tatsächliche H2-Nachfrage. Vor diesem Hintergrund wäre es am besten, wenn Teile der nationalen Öl- und Gasreserven obligatorisch um H2-Reserven oder dessen Derivate ergänzt würden. Dann hätte die Wasserstoffnachfrageseite eine konkrete Quote zu erfüllen. Der Grund: Durch etwaige Wasserstoffreserven wäre eine Abnahmesicherheit gegeben. Dafür eignen sich die Elemente von H2Global, die imstande sind, einen sehr raschen H2-Markthochlauf zu gewährleisten. Bis dahin ist es ein weiter Weg, der aber bestritten werden muss.

Grundsätzlich sollte sich die Europäische Wasserstoffbank auf folgende fünf Grundprinzipien konzentrieren: Einfachheit, Umfang, Schnelligkeit, Stabilität und Nachhaltigkeit.

Eine grüne Kapitalmarktunion

H2Global und die Europäische Wasserstoffbank bilden die Speerspitze für den H2-Markthochlauf. Die Gründung einer Green Capital Market Union (CMU) hingegen bildet nicht nur für Wasserstoffprojekte ein weiteres Fundament, sondern für die gesamte europäische Cleantech-Industrie. Die Idee einer grünen Kapitalmarktunion – zusammen mit neu ausgegebenen grünen Anleihen – stammt von EZB-Präsidentin Christine Lagarde.

Es handelt sich dabei um einen mutigen Ansatz, um langfristige Sicherheit für Investitionen in Cleantech sicherzustellen. Damit sollte eine Risikoteilung zwischen dem privaten und dem öffentlichen Sektor einhergehen: Ein öffentlicher Sektor, der von der Privatwirtschaft angeführt wird. Das wäre die richtige Antwort auf die Investitionslücke und die täglich sinkende Wettbewerbsfähigkeit der europäischen Industrie.

Die Idee einer grünen Kapitalmarktunion zeigt auch: Der Hauptantrieb ist Dekarbonisierung und nicht die Konzentration auf einige wenige Technologien. Die richtige Taxonomie, die sämtliche Cleantech-Technologien beachtet, die zu einer schnellen und nachhaltigen Dekarbonisierung führen, wird entscheidend sein. Frei nach dem Prinzip „Zeit bis zur Markteinführung“ im Rahmen von Innovationen sollte hier die „Zeit bis zur Dekarbonisierung“ das Leitprinzip sein. Dies führt uns zu einem reichhaltigen und komplementären Mix an sauberen Technologien.

Blick in die europäische H2– und Cleantech-Zukunft

Steigende Zinssätze sowie hohe Preise für Rohstoffe erschweren es Unternehmen aktuell, Projekte im Bereich der sauberen Energien, wie Wasserstoff, umzusetzen und Finanzmittel zu beschaffen. Entwickler warten daher mit dem Bau von Großprojekten. Sie hoffen auf sinkende Zinssätze. Die bereits knappen Fremdmittel sind noch schwieriger zu beschaffen. Außerdem verursachen diese Mittel aktuell höhere Kreditkosten. Trotz eines starken Anstiegs der Investitionen von Risikofonds in Wasserstoff zwischen 2019 und 2022 bewegt sich die Mittelbeschaffung im ersten Quartal 2023 nur auf einem Drittel des Niveaus vom ersten Quartal 2022.

Zudem sind China und die USA im Cleantech-Bereich auf dem Vormarsch. Das Engagement der Volksrepublik bei der Solartechnik und der damit einhergehenden Kostenrevolution ist bemerkenswert. Diese Tatsache hat zu einer weltweiten Abhängigkeit von chinesischen Solarpanels geführt. Der Windsektor entwickelt sich in gleicher Weise. Und das chinesische Engagement im Bereich von Wasserstoff? 2021 hatte China einen Anteil von bis zu zehn Prozent an der weltweiten Elektrolysekapazität. Heute sind es bereits 50 Prozent.

Mit H2Global, der Europäischen Wasserstoffbank und einer möglichen grünen Kapitalmarktunion haben wir Werkzeuge für eine klimaneutrale europäische Revolution in der Hand. Europa muss noch einen pragmatischen und technologieübergreifenden Ansatz akzeptieren. Dann haben wir noch immer die Chance, mit den schnellen globalen Entwicklungen Schritt zu halten – und so unabhängig wie möglich zu bleiben.


Wasserstoffverbrauch nach EU-Ländern – Balkendiagramm

Autor:
Jorgo Chatzimarkakis
Hydrogen Europe, Brüssel

 

Ansatzpunkte für einen umfassenden Wasserstoffhochlauf

Ansatzpunkte für einen umfassenden Wasserstoffhochlauf

Branchenkongress gat 2023 in Köln

Um eine funktionsfähige Wasserstoffwirtschaft zu etablieren, muss die gesamte Wertschöpfungskette adressiert werden. Dabei gilt es, sowohl die marktlichen und regulatorischen als auch die technischen Aspekte (Standardisierung) im Blick zu behalten. Auf der Veranstaltung gat 2023 im September in Köln bekam man einen Eindruck davon, wie intensiv die Branche an der Umsetzung arbeitet. Spannend sind hier unter anderem die Umstellpläne der Gasnetzbetreiber in Richtung klimaneutrale Gase. Die zweite Phase des sogenannten Gasnetzgebietstransformationsplans zeigt auch das große Interesse seitens Kommunen und Industrie.

Dr. Kirsten Westphal machte klar, wie man beim Bundesverband der Energie- und Wasserwirtschaft (BDEW) die Zukunft auf dem Wärmemarkt sieht: „Anstelle von Erdgas werden zukünftig vor allem Wasserstoff und seine Derivate zum Einsatz kommen“, sagte das Mitglied der Hauptgeschäftsführung auf der Veranstaltung in Köln. Dabei werde der Wasserstoff sowohl aus heimischer Produktion als auch, zu erheblichen Anteilen, aus Importen stammen. Beim BDEW macht man sich keine Sorgen, dass es hier zu einer Mangelsituation kommt. „Die Studienlage zeigt, dass ausreichende Mengen an Wasserstoff verfügbar gemacht werden können“, konstatierte Westphal.

Allerdings benötigt der Hochlauf der Wasserstofferzeugung die richtigen Rahmenbedingungen. Dazu zählt die BDEW-Vertreterin neben der Beschleunigung und Stärkung des Ausbaus erneuerbarer Energien in Deutschland auch die schnelle Notifizierung der IPCEI-Projekte (IPCEI: Important Projects of Common European Interest) für Wasserstofferzeugung durch die EU, die dann Ende des Jahres tatsächlich erfolgte (s. S. 20), sowie weitere ergänzende Förderprogramme zur Erreichung des Elektrolyseziels von 10 GW im Jahr 2030.

Auf der Importseite fordert Westphal von der Politik die kurzfristige Vorlage einer Importstrategie ein. Zudem sollte auch die Finanzierung von Importprojekten durch Maßnahmen flankiert werden, etwa durch Hermesdeckungen oder Kapitalzuschüsse.

Aufbau eines funktionierenden H2-Handelsmarktes

Ein Aspekt von besonderer Bedeutung ist jedoch, den Hochlauf der Wasserstofferzeugung in die Entwicklung eines Marktes einzubetten. In den verschiedenen Phasen werden hier jeweils andere politische Instrumente benötigt: zu Beginn mehr Steuerung und Förderung, später zunehmend Markt und weniger Förderung. Zielbild ist ein funktionierender Handelsmarkt, auf dem Wasserstoffmengen nach marktwirtschaftlichen Mechanismen effizient verteilt werden.

Doch was kennzeichnet das Zielbild des eingeschwungenen Wasserstoffmarkts? Dazu nannte die BDEW-Expertin in Köln ein ganzes Bündel an Kriterien:

  • Erzeugung und Handel von Wasserstoff und seinen Derivaten in Deutschland, der EU und global in ausreichenden Mengen
  • Die Kombination aus Langfristverträgen (insbesondere auf der Importstufe) mit wettbewerbsfähigen Preisen, die die aktuellen Marktbedingungen reflektieren, sowie zunehmend Spotlieferungen
  • Der Handel von Herkunftsnachweisen, Zertifikaten und Commodity auf einem einheitlichen, standardisierten europäischen Markt inkl. eines internationalen Anschlusses
  • Wettbewerb beim Zugang zum Endkunden sowie auf der Anbieterseite transparente Preissignale und hinreichende Marktliquidität
  • Eine voll funktionsfähige und umspannende Netzinfrastruktur. Ein diskriminierungsfreier Netzzugang für alle wettbewerblichen Akteure auf dem Wasserstoffmarkt. Der H2-Netzzugang basiert dabei im Grundsatz auf dem Entry-Exit-System.
  • Klimaneutraler Wasserstoff wird überall dort eingesetzt, wo Nachfrage besteht. Dabei richtet sich die Nachfrage nach dem Marktpreis.
  • Speicher sichern die Versorgungssicherheit für Wasserstoff sowie Derivate ab und eröffnen verschiedene Flexibilisierungen des Wasserstoffmarktes. Es gibt sowohl dezentrale Erzeugung und Abnahme als auch zentrale Speicher.

Bei all diesen Vorhaben sind laut Westphal eine transparente und integre Standardisierung sowie Zertifizierungen vonnöten, auch um eine Akzeptanz für Wasserstoff und seine Derivate zu schaffen, wozu es zudem einen stabilen Regulierungsrahmen braucht.

Standardisierung von besonderer Bedeutung

Das Etablieren von Standards ist auch aus der Sicht von Dr. Thomas Gößmann das Mittel der Wahl. Dabei gilt es laut dem Thyssengas-Chef zu berücksichtigen, dass die Genehmigungsbehörden mit dem Thema Wasserstoff bislang nur wenige Berührungspunkte und daher in den meisten Fällen noch keine Erfahrung haben.

Für das Exportland Deutschland sei die Verständigung auf internationale Standards von besonderer Bedeutung, konstatierte auf der gat auch die Ministerialdirigentin im Bundesministerium für Bildung und Forschung (BMBF), Oda Keppler. Dies gelte unter anderem auch für die Qualitätskriterien für das Produkt Wasserstoff, da sonst der internationale Handel nicht in Gang komme.

Für den Erfolg der Wasserstoffwirtschaft ist es laut Gößmann zudem entscheidend, die Bevölkerung einzubinden: „Wenn es dem Land der Ingenieure gelingt, die Menschen mitzunehmen, dann werden wir es auch schaffen“, ist sich der Thyssengas-Chef sicher. Dabei sei es auch wichtig, den Fokus nicht zu sehr auf die Farbenlehre des Wasserstoffs zu richten. Diese sei für viele Menschen sowieso kaum nachvollziehbar: „Wir sind farbenblind. Wir stellen die Autobahn, wer darüberfährt, ist uns egal“, sagte der Netzbetreiber.

Dr. Frank Reiners ist sich sicher, dass es mit der Wasserstoffwirtschaft nur richtig losgehen wird, wenn es gelingt, die gesamte Wertschöpfungskette zu bespielen. Nach Einschätzung des Mitglieds der Geschäftsführung von Open Grid Europe ist dabei jedoch der Leitungsbau von besonderer Bedeutung. Deutschland habe hier als Drehscheibe eine besondere Rolle und Verantwortung, da viele Gaspipelines hier anlanden beziehungsweise zusammenkommen. „Wir können es uns nicht leisten, nichts zu tun“, konstatierte Reiners in Köln.

Abb. 2: Prof. Gerald Linke, Vorstandsvorsitzender des DVGW, sagte bei der Eröffnung der Branchenveranstaltung gat in Köln: „Das Backbone-Netz muss allen Regionen in Deutschland den Zugang zu klimaneutralem Wasserstoff ermöglichen.“

H2-Kernnetz für alle Regionen

Beim Deutschen Verein des Gas- und Wasserfaches (DVGW) begrüßt man den Vorstoß der Bundesregierung, in einer Novelle des Energiewirtschaftsgesetzes einen gesetzlichen Rahmen für die schnelle Genehmigung und den Aufbau eines Wasserstoffkernnetzes zu etablieren. Allerdings geht dem DVGW dieser Ansatz nicht weit genug: „Das Backbone-Netz muss allen Regionen in Deutschland den Zugang zu klimaneutralem Wasserstoff ermöglichen, da sonst eine Abwanderung ganzer Wirtschaftszweige droht, insbesondere im Bereich des Mittelstands“, sagte der DVGW-Chef Prof. Gerald Linke auf der Branchenveranstaltung.

In einem zweiten Schritt brauche es deshalb auch eine Transformationsregulierung für Gasverteilnetze. Ohne eine umfassende Umstellung der bestehenden Gasverteilinfrastruktur sei es nicht möglich, die Anschlüsse von 1,8 Mio. Industrie- und Gewerbekunden in Richtung Klimaneutralität zu transformieren, betont Linke.

Die Grundlage für den Transport zu den Endkunden hat der DVGW gemeinsam mit der Initiative H2vorOrt im sogenannten Gasnetzgebietstransformationsplan (GTP) geschaffen. Im aktuellen zweiten Planungsjahr haben sich daran 241 Gasverteilnetzbetreiber beteiligt, eine deutliche Steigerung gegenüber den 180 Unternehmen im Vorjahr. Aktuell deckt der GTP nun Gasleitungen mit einer Gesamtlänge von 415.000 km ab und erreicht 381 der insgesamt 401 deutschen Landkreise.

Der Planungsprozess beim GTP ist bewusst ergebnisoffen angelegt und umfasst sowohl die Umnutzung, die Stilllegung und den partiellen Neubau von Leitungen. Berücksichtigt werden sämtliche neuen, klimaneutralen Gase, also neben Wasserstoff etwa auch Biomethan. Ziel des GTP ist es, die Transformation auf Verteilnetzebene zu beschleunigen und durch die Einzelplanungen der Netzbetreiber in Abstimmung mit den anderen Stufen der Versorgungskette ein kohärentes Zielbild für ganz Deutschland zu schaffen. Im Rahmen der GTP-Planung analysieren die Netzbetreiber dabei auf Basis ihrer konkreten Situation vor Ort die Bedarfe ihrer Kunden, die dezentrale Einspeisesituation, die Entwicklung der Wasserstoffbereitstellung durch vorgelagerte Netzbetreiber und die technische Eignung ihrer Netze für Wasserstoff.


Erstmals in Deutschland wurde auf der OGE-Verdichterstation Emsbüren mit der Umstellung einer Ferngasleitung auf den Transport von Wasserstoff begonnen

Kommunen und Industrie planen mit Wasserstoff

Teil des GTP ist auch eine Befragung der Endkunden durch die jeweiligen Netzbetreiber. Diese ergab einen deutlichen Zuspruch zum Einsatz klimaneutraler Gase. So sehen langfristig lediglich fünf Prozent der knapp 1.000 befragten Kommunen keinen Bedarf für die Verwendung klimaneutraler Gase. Von den knapp 2.000 antwortenden industriellen Großkunden setzen mehr als drei Viertel auf Wasserstoff. 29 Prozent sehen bereits bis zum Jahr 2030 eine Option für den Einsatz von Wasserstoff, weitere 30 Prozent erwarten einen solchen in der kommenden Dekade.

Einige aktuelle Projekte zeigen, dass diese Visionen bereits in die Tat umgesetzt werden. So fiel Mitte Oktober auf der Verdichterstation Emsbüren des Netzbetreibers OGE in Niedersachsen der Startschuss zur Umstellung der ersten Ferngasleitung für den Transport von Wasserstoff (s. Abb. 3). Als Teil des Projekts GET H2 Nukleus soll damit der Kern für eine bundesweite Wasserstoffinfrastruktur etabliert werden. Mit der Umstellung wollen die beteiligten Netzbetreiber Abnehmern aus Industrie und Mittelstand einen Anschluss an die Wasserstoffversorgung ermöglichen.

Die meisten der befragten Kommunen setzen laut einer DVGW-Umfrage langfristig auf klimaneutrale Gase

Ein weiteres Projekt startete Anfang November im Energiepark Bad Lauchstädt mit dem Beginn der zweiten Phase der Umstellung einer Gastransportleitung für den Wasserstofftransport. Für den technisch einwandfreien Betrieb des Leitungsnetzes der Zukunft des Fernleitungsnetzbetreibers Ontras Gastransport wurde eine Molchschleuse eingehoben. In den folgenden Monaten wird die Inbetriebnahme der Wasserstoffleitung weiter vorbereitet. Dazu ist der Bau einer Übergabestation sowie die Einrichtung der Anlage zur Gasreinigung und -trocknung notwendig. Bis zur vollständigen Inbetriebnahme des Energieparks Bad Lauchstädt im Jahr 2025 folgen dann bereits Testtransporte von Wasserstoff, die wissenschaftlich durch das DBI – Gastechnologisches Institut gGmbH Freiberg begleitet werden.

Solche Projekte tragen dazu bei, zunehmend die Standortvorteile des Kontinents zu adressieren. Prof. Thomas Thiemann von Siemens Energy brachte die Situation auf der gat in Köln so auf den Punkt: „Europa hat mit dem großen Pipelinenetz und den Speichern ein riesiges Asset gegenüber anderen. Diesen Vorteil müssen wir ausspielen.“

    
76 Prozent der befragten Industriekunden haben Interesse an Wasserstoff

Studie: Grüner Wasserstoff langfristig nicht teurer als Gas
Die Endkundenpreise für grünen Wasserstoff könnten mittel- und langfristig im Bereich von Erdgas beziehungsweise der heute geltenden Gaspreisbremse von 12 ct/kWh liegen. Das hat eine Studie von Frontier Economics im Auftrag des DVGW ermittelt. Vergleicht man die Gesamtkosten – also Kosten für Anschaffung, Gebäudesanierung und Betrieb –, liegt danach sowohl bei Einfamilien- als auch bei Mehrfamilienhäusern eine mit Wasserstoff betriebene Gastherme je nach Gebäudetyp und Effizienzklasse auf einem ähnlichen Niveau wie eine elektrisch betriebene Wärmepumpe. In der Studie wurden die Gesamtkosten verschiedener Energieträger für Haushalte sowie für exemplarische Wärmeversorgungslösungen miteinander verglichen.

Für den Kostenvergleich wurden indikative Endkundenpreise, die auf Gestehungskosten basieren, herangezogen. Neben den Preisen für gasförmige Energieträger vergleicht die DVGW-Studie auch die Gesamtkosten, die auf Haushalte je nach Wärmeversorgungslösung zukommen können. Denn mit Blick auf die Einhaltung der Klimaziele muss die Wärmeerzeugung für die Gebäude in Deutschland grundlegend umgestellt werden, so der DVGW.

Ziel der Untersuchung ist es einerseits, die Endkundenpreise von grünem Wasserstoff ins Verhältnis zu alternativen Energieträgern für Haushalte in den Jahren 2035 und 2045 zu setzen. Andererseits fokussiert die Analyse auf die Gesamtkosten verschiedener Wärmeversorgungslösungen bei zwei ausgewählten Gebäudetypen der Effizienzklassen B und D. Betrachtet werden Grüngasthermen auf Basis von Biomethan und klimaneutralem Wasserstoff sowie Wärmepumpen.

Insgesamt zeigt der Vergleich, dass die Kostenrelationen der Energieträger sich über den betrachteten Zeitraum verändern: Während die Endkundenpreise für klimaneutralen Wasserstoff in Deutschland bis zum Jahr 2035 voraussichtlich noch über denen für Erdgas und Biomethan liegen, könnten sie bis 2045 ein vergleichbares Niveau erreichen.

Haushalte in Deutschland müssten demnach im Jahr 2035 zwischen 12 und 17 ct/kWh für Wasserstoff bezahlen. Der Preis für Erdgas läge hingegen, unter Berücksichtigung steigender CO2-Preise, zwischen 9 und 11 ct/kWh und der für Biomethan knapp darüber, bei etwa 10 bis 13 ct/kWh, je nach verwendeter Biomasse bei seiner Erzeugung.

Nach 2035 könnten die Endkundenpreise für Wasserstoff sinken und sich denen von Erdgas annähern. Wesentliche Treiber hierfür sind unter anderem die Degression der Kosten für die H2-Produktion sowie steigende CO2-Preise im Rahmen des Emissionshandels. Im Jahr 2045 könnten dann laut Studie die Bezugskosten für Wasserstoff auf rund 11 bis 15 ct/kWh sinken.

Autor: Michael Nallinger

Erprobung von BZ-Bussen und ihren H2-Tankstellen

Erprobung von BZ-Bussen und ihren H2-Tankstellen

Zwischenbilanz zur Analyse der Leistungsfähigkeit
Elektromobilität

Brennstoffzellenbusse (BZ-Busse) werden seit rund 20 Jahren erprobt. Mit europäischer Förderung laufen derzeit Demonstrationsprojekte mit rund 300 dieser Fahrzeuge. Die Leistungsfähigkeit der Busse und ihrer Wasserstofftankstellen wird auf der Basis von Betriebsdaten analysiert. Dieser Artikel möchte anhand ausgewählter Indikatoren eine Zwischenbilanz ziehen, inklusive Vergleichen mit den Ergebnissen bereits abgeschlossener Projekte. Insgesamt zeigen die Busse ein positiveres Bild als die Tankstellen.

Im Rahmen der Projekte JIVE und JIVE 2 (2017 bis 2024 bzw. 2018 bis 2025) sind die Busse an 16 Standorten in sechs Ländern im Einsatz (s. Abb. 2). Die örtlichen Flotten umfassen fünf bis 54 BZ-Busse. Zum Einsatz kommen einstöckige 12-m-Solobusse, Doppeldecker (in Großbritannien) sowie an einem Standort straßenbahnähnliche 18-m-Gelenkbusse. Die Wasserstofftankstellen wurden zum Teil aus einem weiteren Projekt namens MEHRLIN gefördert (Projektende: 30. Juni 2023).

Standorte der Projekte JIVE, JIVE 2 und MEHRLIN (Aberdeen, Auxerre, Barcelona, Birmingham, Bozen, Brighton, Emmen, Gelderland, Groningen, Region Köln, London, Pau, Südholland, Toulouse, Wiesbaden und Wuppertal) sowie Länder mit Beobachter-Regionen. Wegen einer Neuausrichtung beim Busbetreiber ist der Standort Wiesbaden nicht mehr aktiv.

Zu den Aktivitäten im Arbeitspaket „Monitoring and Analysis“ gehören neben dem hier auszugsweise vorgestellten „Performance Assessment“ auch ein Umwelt- und Kostenvergleich zwischen BZ- und Batteriebussen [1] und die Dokumentation von „Best Practice“ [2].
Aus Gründen der Vertraulichkeit wurden die Ergebnisse so aggregiert, dass keine Rückschlüsse auf einzelne Standorte möglich sind, soweit die Informationen nicht ohnehin bereits öffentlich zugänglich sind.

Stand Mitte 2023
Bis Ende Juni 2023 (Stand der Datenbasis im Folgenden) legten die Busse rund 13 Millionen Kilometer zurück. In über 63.000 Tankvorgängen wurden mehr als 1 Million Kilogramm Wasserstoff abgegeben.

Verfügbarkeit der Brennstoffzellenbusse


Verfügbarkeit der Busse in JIVE/JIVE 2 im Vergleich mit früheren Projekten

Abbildung 3 zeigt einen Vergleich der Verfügbarkeit in den größeren Projekten zur Erprobung von Brennstoffzellenbussen seit 2001. Die Kastengrafiken zeigen jeweils die Maximal- und Minimalwerte, die beiden mittleren Quartile und, als waagrechte Linie innerhalb des Kastens, den Median.

Die BZ-Busse bis 2009 in den Projekten CUTE und HyFLEET:CUTE waren noch nicht hybridisiert, das heißt, es gab keine Batterie zur Unterstützung der Brennstoffzelle und keine Möglichkeit zur Rückgewinnung von Bremsenergie. Da pro Standort stets zwei Monteure der Hersteller anwesend waren, um Probleme zu beheben, war die Verfügbarkeit der Fahrzeuge vergleichsweise hoch.

Kastengrafiken (Box-Plots) sind ein Werkzeug zur aggregierten grafischen Darstellung von Daten, die mehr Information vermitteln können als zum Beispiel Mittelwerte und Standardabweichungen. Der Median ist der zentrale Wert einer auf- oder absteigend sortierten Liste von Daten. Bei Werten von beispielsweise 90 % – 90 % – 85 % – 80 % – 60 % – 40 % – 10 % beträgt der Median 80 %, der Mittelwert dagegen 65 %. Die beiden mittleren Quartile umfassen das Viertel aller Werte über und unter dem Median und sind somit ein Indikator dafür, wie stark die zentrale Hälfte aller Werte um den Median streut.

Ein signifikanter Vergleich ist daher vor allem zwischen dem Projekt CHIC mit der ersten Generation hybridisierter BZ-Busflotten (2010 bis 2016) und JIVE/JIVE 2 (seit 2017/18) möglich. Abbildung 3 zeigt eine deutliche Verbesserung der Bus-Verfügbarkeit in den aktuellen Projekten. Einzelne Standorte erreichen mehr als 99 Prozent, während nicht alle an das Ziel von über 90 Prozent herankommen.

Ausfallzeiten werden zumeist nicht von Komponenten verursacht, die dem Brennstoffzellenantrieb zuzuordnen sind, sondern Auslöser sind häufig konventionelle Bauteile. Längere Ausfallzeiten entstanden zum Beispiel dadurch, dass ein Hersteller unter anderem die Halterungen für die Wasserstofftanks verstärken musste, da die Vibrationen in Bussen ohne Dieselmotor unterschätzt worden waren. Bei einem anderen Fabrikat mussten die Klimaanlagen getauscht werden.

Laufleistung
Die Busse haben gezeigt, dass 500 Kilometer pro Tag beziehungsweise ohne Zwischenbetankung zurückgelegt werden können. Geringere Laufleistungen resultieren aus den örtlichen Einsatzbedingungen, also nicht aus Beschränkungen, die sich aus dem Wasserstoff-/Brennstoffzellenantrieb ergeben. Ein Standort setzt die Fahrzeuge zum Beispiel als Vorfeldbusse auf dem Flughafen ein, wo kurze Wege zurückzulegen sind. Insgesamt erfüllen die Fahrzeuge die Erwartungen der Betreiber.

Spezifischer Kraftstoffbedarf


Entwicklung des spezifischen Kraftstoffbedarfs von Projekt zu Projekt. Seit CHIC sind die Antriebe hybridisiert.

Abbildung 4 zeigt, wie sich der Kraftstoffbedarf pro 100 Kilometer Laufleistung entwickelt hat. Von CUTE zu HyFLEET:CUTE wurde zunächst der nicht-hybridisierte Antrieb optimiert. Ein Effizienzsprung ergab sich durch die Hybridisierung im Projekt CHIC. Im Rahmen von JIVE/JIVE 2 werden noch einmal deutlich geringere Werte von bis zu 6,5 kg/100 km erreicht. Damit wird das Projektziel von 9 kg/100 km für Solobusse in der Regel deutlich unterboten, selbst von den Doppeldeckern. Auch die 18-m-Fahrzeuge unterschreiten das Ziel von 14 kg/100 km klar.

Der saisonale Einfluss der Umgebungstemperatur beziehungsweise der Einfluss des Heizenergiebedarfs auf den Kraftstoffverbrauch konnte bespielhaft für zwei Standorte ermittelt werden, deren Fahrzeuge keine Klimaanlage besitzen, die also ohne Energiebedarf für Kühlung im Sommer auskommen. Hier variiert der Kraftstoffverbrauch über das Kalenderjahr um ca. ± 1 bis 2 kg/100 km bzw. ± 15 bis 20 %.

Zwischenfazit
Aufgrund der positiven Erfahrungen mit den BZ-Bussen haben sich einige Standorte entschlossen, weitere Fahrzeuge dieses Typs zu beschaffen. Hervorzuheben ist hier der Regionalverkehr Köln, der über die 50 in JIVE beziehungsweise JIVE 2 geförderten Busse hinaus bereits Verträge für bis zu 100 weitere Einheiten geschlossen hat. Andererseits wurde die Erweiterung der Flotte an einem anderen Standort zurückgestellt, weil es erhebliche Probleme mit der Wasserstofftankstelle gab; mehr dazu im Folgenden.

Vertankte Wasserstoffmengen


Vertankte Wasserstoffmengen pro Quartal als Summe aller Standorte

Bis Mitte 2023 wurden an 18 Tankstellen mehr als 1 Million Kilogramm Wasserstoff abgegeben. Die zeitliche Entwicklung ist in Abbildung 5 dargestellt. Die Quartalswerte für 2020 sind gering, da – bedingt durch die Corona-Pandemie – erst wenige Fahrzeuge in Betrieb waren beziehungsweise gingen und die Laufleistungen häufig geringer waren als sonst üblich. 2021 begann ein deutlicher Anstieg, unterbrochen von einem Rückgang im ersten Quartal 2022. Letzterer war bedingt durch:

–    Probleme mit den Bussen an mehreren Standorten, insbesondere bedingt durch Nachrüstungen wegen der unerwartet starken Vibrationen

–    Probleme an mehreren Tankstellen, die in einigen Fällen den Busbetrieb länger zum Erliegen brachten

–    Steigende Energie- bzw. Wasserstoffpreise nach dem Angriff auf die Ukraine, weshalb einige Betreiber den Einsatz ihrer BZ-Busse reduzierten

Seit dem zweiten Quartal 2022 steigen die Werte wieder nahezu stetig, auch bedingt durch die Inbetriebnahme weiterer Busse. Die Tankstellen stoßen in der Regel nicht an ihre Kapazitätsgrenzen: Durch den unerwartet niedrigen spezifischen Kraftstoffbedarf der Busse und die zeitweise geringeren Laufleistungen als geplant sind einige der Tankstellen zeitweise erheblich unterausgelastet.

Verfügbarkeit der Wasserstofftankstellen


Verfügbarkeit der Tankstellen in JIVE/JIVE 2/MEHRLIN im Vergleich mit früheren Projekten

Das Mindestziel für die Verfügbarkeit der Wasserstofftankstellen in JIVE, JIVE 2 und MEHRLIN ist größer 98 Prozent, wobei 99 Prozent angestrebt werden. Dabei bleiben Zeiten der Nichtverfügbarkeit für planmäßige Wartung unberücksichtigt. Abbildung 6 zeigt, dass dieses Mindestziel von weniger als der Hälfte der Standorte erreicht wird (der Median liegt unter 98 %). Im Projekt CHIC waren die Tankstellen durchschnittlich deutlich verfügbarer, bei einem Zielwert von ebenfalls über 98 Prozent.

Die Ursachen für geringe Verfügbarkeiten lassen sich, aus der Perspektive der Betankungseinheit, in zwei Bereiche aufgliedern:

–    Externe Gründe bedeuten, dass die Wasserstofferzeugung vor Ort ausgefallen ist oder die Anlieferung von Wasserstoff nicht rechtzeitig erfolgt ist oder beides, so dass keine Betankungen möglich sind. Dies ist an zahlreichen Tankstellen zeitweise eingetreten.

–    Interne Gründe bedeuten, dass wegen technischer Probleme keine Betankungen möglich sind. Davon sind alle Tankstellen betroffen, wenn auch in deutlich unterschiedlichem Maße.

Dabei haben sich die wesentlichen Ursachen für Ausfälle von Wasserstofftankstellen für Busse aus internen Gründen in den letzten 20 Jahren kaum verändert. Sie umfassen insbesondere Probleme mit

–    Wasserstoffkompressoren

–    den Komponenten zur Betankung, insbesondere den Füllkupplungen mit ihren empfindlichen Infrarot-Sensoren zur Datenübertragung vom Bus an die Tankstelle

–    der Qualität bzw. Schnelligkeit des Hersteller-Services, d. h. Ausfälle wären teilweise vermeidbar gewesen oder dauern unnötig lange.

Hinzu kommen, nach dem Wechsel zu Typ-4-Tanks auf den meisten Bussen der aktuellen Generation, Herausforderungen bei der Vorkühlung des Wasserstoffs zur Gewährleistung einer hinreichend schnellen und vollständigen Befüllung, bedingt durch Softwareprobleme und fehlende anerkannte Betankungsprotokolle.

Die Partner des JIVE/JIVE 2/MEHRLIN-Konsortiums sehen die Gefahr, dass die breite Einführung von BZ-Bussen an einem Mangel an verlässlicher Betankungsinfrastruktur scheitern könnte.

Zusammenfassung

Die Erprobung der BZ-Busse und Wasserstofftankstellen in den Projekten JIVE, JIVE 2 und MEHRLIN wurde beziehungsweise wird durch eine Reihe externer Faktoren negativ beeinflusst. Dazu gehören die Corona-Pandemie, gestiegene Wasserstoffpreise und Probleme mit der Wasserstoffbelieferung.

Positiv ist festzuhalten, dass einige Standorte sich aufgrund guter Erfahrungen bereits vor Projektabschluss entschieden haben, ihre BZ-Bus-Flotte zu erweitern.

Die Busse zeigen insgesamt eine bessere Leistungsfähigkeit als die Fahrzeuge der Vorgängergeneration, auch wenn bislang nicht an allen Standorten die Zielwerte, wie eine Verfügbarkeit von mindestens 90 Prozent, erreicht werden. Insbesondere ist die in JIVE/JIVE 2 deutlich verbesserte Effizienz der Busse hervorzuheben.

Bei der Verfügbarkeit der Wasserstofftankstellen ist bisher keine generell positive Entwicklung zu erkennen. Ausfälle der Tankstellen wegen interner technischer Probleme haben im Einzelfall zu einem längeren Stillstand der lokalen BZ-Bus-Flotte geführt. Es ist bemerkenswert, dass auch nach rund 20 Jahren Erfahrung mit Tankstellen auf 350-bar-Druckniveau die Probleme mit einigen ihrer Komponenten nicht gelöst werden konnten.

Danksagung

Die Projekte JIVE und JIVE 2 werden von Clean Hydrogen Partnership (vormals Fuel Cells and Hydrogen Joint Undertaking) im Rahmen der Zuwendungsvereinbarungen Nr. 735582 bzw. 779563 gefördert. Clean Hydrogen Partnership erhält Unterstützung aus dem Horizon-2020-Programm der Europäischen Union für Forschung und Innovation sowie von Hydrogen Europe und Hydrogen Europe Research. Das Projekt MEHRLIN wurde aus Mitteln der Connecting Europe Facility der Europäischen Union kofinanziert.

Die Ergebnisse wurden erstmals auf der Zero Emission Bus Conference 2023 vorgestellt.

Literatur

[1]        A. Zimmerer, S. Eckert und V. Roderer, Environmental Impacts and External Cost Benefits of Fuel Cell Buses. Comparison of Fuel Cell Buses with Battery Electric Buses, 2023. https://fuelcellbuses.eu/publications.

[2]        K. Buss, K. Stolzenburg, N. Whitehouse and S. Whitehouse, JIVE Third Best Practice and Commercialisation Report / JIVE 2 Second Best Practice Information Bank Report, 2022. https://fuelcellbuses.eu/publications.

AutorInnen:
Klaus Stolzenburg
Ingenieurbüro PLANET GbR, Oldenburg
k.stolzenburg@planet-energie.de
Katharina Buss
Ingenieurbüro PLANET GbR, Oldenburg
k.buss@planet-energie.de
Vanessa Roderer
Sphera Solutions GmbH, Leinfelden-Echterdingen
VRoderer@sphera.com
Stefan Eckert
Sphera Solutions GmbH, Leinfelden-Echterdingen
SEckert@sphera.com

 

Das Branchen-Highlight im Herbst

Das Branchen-Highlight im Herbst

Hydrogen Technology Expo überzeugt vollends

Auch im Herbst 2023 war die Hydrogen Technology Expo wieder die Veranstaltung, auf der man gewesen sein muss. Das dritte Mal in Folge steigerte der britische Veranstalter Trans-Global Events Ltd sowohl die Aussteller- als auch die Besucherzahlen eklatant, weshalb die Messehallen der Hansestadt an der Weser 2024 nicht mehr ausreichen werden. Der Umzug nach Hamburg in diesem Jahr ist somit unausweichlich und war von HZwei schon frühzeitig prophezeit worden (s. HZwei-Heft Jan. 2023).

Der Trend ist unverkennbar: Immer mehr Firmen aus der Maschinenbau-, Elektro- und Chemiebranche drängen auf den Wasserstoffmarkt. Dementsprechend war in den vier Bremer Messehallen eine Vielzahl gänzlich neuer Aussteller zu finden. Unter ihnen zahlreiche unbekannte Namen, aber auch Schwergewichte wie Saudi Aramco, ExxonMobil oder ITM Power.

Nach 180 Ausstellern im ersten und 350 im zweiten Jahr waren es dieses Mal über 550 – 2024 sollen es nochmals mindestens 100 mehr werden. Die Besucherzahlen steigerten sich gegenüber dem Vorjahr von 5.000 auf über 10.000.

Bewegung in Richtung Massenproduktion

Unternehmen wie der Chemiekonzern Gore hatten sich explizit „diese Tradeshow in Europa ausgesucht“, weil „Europa am weitesten ist“. Nouchine Humbert, Global Marketing Director von W.L. Gore, erklärte gegenüber HZwei: „Das ist ein Markt, wo wir ein starkes Wachstum erwarten.“ Gemeint ist damit insbesondere der Elektrolysesektor, weil im Vergleich Brennstoffzellen „viel mehr Quadratmeter als Elektrolyseure“ brauchen.

Über ausreichend Produktionskapazitäten verfügt das nordamerikanische Unternehmen – und zwar in Japan. Die dortigen Fertigungsstraßen reichen noch für fünf Jahre, zeigte sich Rainer Enggruber, Leiter des Geschäftsbereichs PEM-Wasser-Elektrolyseprodukte, zuversichtlich. Gigawatt-Ankündigungen seien daher keine Herausforderungen für den Membranhersteller, hieß es selbstsicher.

Neuartiger Röhrenkatalysator

Eine Neuheit zeigte die Hebmüller Group. Verkaufsleiter Marc Hebmüller stellte den Prototyp des HydroGenMHD (s. Abb. 1) vor, eines H2-Erzeugers von One Scientific aus Johnson City. Die Firma Hebmüller ist europäischer Lizenznehmer des US-amerikanischen Systementwicklers, der diesen kompakten Röhrenkatalysator entwickelt hat, in dessen Magnetohydrodynamik-Kammer Wasserstoff unter Abspaltung von Sauerstoff aus Wasserdampf erzeugt wird.

Marc Hebmüller erläuterte: „Bei dieser innovativen Technologie kommt ein einzigartiges System zum Einsatz, bei dem überhitzter Dampf mit einem Katalysator und intensiven, durch das MHD-Verfahren erzeugten Magnetfeldern in Kontakt gebracht wird. Diese Magnetfelder bewirken eine kontrollierte Plasmadynamik im Ausgangsmaterial, die die Dissoziation der Moleküle in Wasserstoff- und Sauerstoffgas erleichtert.“

Stack auf Leiterplattenbasis

Ein gänzlich neues Konzept zur Fertigung von Brennstoffzellen präsentierte Bramble Energy: Einen Brennstoffzellen-Stack, der auf Leiterplattentechnologie aufbaut. Das 2017 gegründete britische Unternehmen setzt dabei auf den Kunststoff FR4, der für die erforderliche Stabilität sorgt, und Kupfer als Wärme- sowie Stromleiter. Zwischen zwei Leiterplatten kommt jeweils eine Membran, wodurch gänzlich auf Bipolarplatten verzichtet werden kann. Stattdessen bildet eine Monopolarplatte eine Einzelzelle, wovon dann mehrere gestapelt werden.

Den Technology Readiness Level bezifferte Carsten Pohlmann, Direktor für Geschäftsentwicklung (s. Abb. 2), mit TRL 9, den Preis pro Kilowatt mit 100 US-$. Erste Versuche in einem Renault-Demonstrator sowie mit einem 100-kW-System für einen Doppeldeckerbus laufen bereits.

Die nächste Hydrogen Technology Expo Europe wird am 23. und 24. Oktober 2024 auf dem Messegelände Hamburg stattfinden. Sie überschneidet sich damit um einen Tag mit der WindEnergy.

 

Das Neue HZwei-Magazin ist da – Druckfrisch und bereit zu informieren!

Das Neue HZwei-Magazin ist da – Druckfrisch und bereit zu informieren!

Liebe Leserinnen und Leser, wir freuen uns, Ihnen die neueste Ausgabe des HZwei-Magazins vorstellen zu dürfen! Diese frische Print-Version ist ab sofort verfügbar und bietet Ihnen eine Fülle von Einblicken in die aufregende Welt des Wasserstoffs und der Brennstoffzellen. Wir möchten Ihnen nicht nur einen Vorgeschmack auf die spannenden Themen dieser Ausgabe geben, sondern auch über die Möglichkeiten informieren, wie Sie das Magazin in den Händen halten können.

Rund um Wasserstoff und Brennstoffzellen: Das HZwei-Magazin

Das HZwei-Magazin ist Ihre Quelle für fundierte Informationen über die Wasserstoff- und Brennstoffzellentechnologie. In dieser Ausgabe werfen wir einen genauen Blick auf die folgenden Themen:

  • Wasserstoffmobilität im Wandel: Erfahren Sie, wie Wasserstofffahrzeuge die Straßen erobern und wie sich die Mobilitätslandschaft entwickelt.
  • Grüner Wasserstoff: Tauchen Sie ein in die Welt der nachhaltigen Wasserstoffproduktion und -nutzung, die einen Schlüssel zur Dekarbonisierung darstellt.
  • Wasserstoff in der Industrie: Entdecken Sie, wie Unternehmen Wasserstoff in ihren Produktionsprozessen einsetzen, um umweltfreundlicher zu werden und die Effizienz zu steigern.
  • Internationale Entwicklungen: Verfolgen Sie die neuesten Entwicklungen und Projekte rund um den Globus, die die Wasserstoffwirtschaft vorantreiben.
  • Interviews und Expertenmeinungen: Hören Sie von Branchenexperten und Pionieren, die ihre Einblicke und Visionen teilen.

Die Print-Version ist da!

Während die digitale Version bereits vor einigen Tagen veröffentlicht wurde und für alle unsere Abonnenten kostenlos zum Download bereitsteht, ist die Print-Ausgabe jetzt ebenfalls erhältlich. Für diejenigen unter Ihnen, die das physische Leseerlebnis bevorzugen, bieten wir die Print-Ausgabe auch im Kombi-Abonnement an. So erhalten Sie Ihr Exemplar automatisch und bequem nach Hause geliefert.

Abonnieren Sie HZwei und Bleiben Sie am Puls der Wasserstoffwelt!

Mit einem Abonnement von HZwei verpassen Sie keine Ausgabe und bleiben stets informiert über die neuesten Entwicklungen, Innovationen und Erfolgsgeschichten in der Wasserstoff- und Brennstoffzellenbranche. Seien Sie Teil unserer globalen Gemeinschaft von Wasserstoff-Enthusiasten und gestalten Sie die Zukunft der sauberen Energie mit! Wir laden Sie herzlich ein, das HZwei-Magazin zu abonnieren und sich auf eine aufregende Reise in die Welt des Wasserstoffs und der Brennstoffzellen zu begeben. Besuchen Sie unsere Webseite, um mehr zu erfahren und Ihr Abonnement noch heute abzuschließen. Vielen Dank, dass Sie Teil unserer Wasserstoff-Community sind, und wir freuen uns darauf, gemeinsam die Zukunft der nachhaltigen Energie zu gestalten! Mit besten Grüßen, Ihr HZwei-Team

preloader