Ansatzpunkte für einen umfassenden Wasserstoffhochlauf

Ansatzpunkte für einen umfassenden Wasserstoffhochlauf

Branchenkongress gat 2023 in Köln

Um eine funktionsfähige Wasserstoffwirtschaft zu etablieren, muss die gesamte Wertschöpfungskette adressiert werden. Dabei gilt es, sowohl die marktlichen und regulatorischen als auch die technischen Aspekte (Standardisierung) im Blick zu behalten. Auf der Veranstaltung gat 2023 im September in Köln bekam man einen Eindruck davon, wie intensiv die Branche an der Umsetzung arbeitet. Spannend sind hier unter anderem die Umstellpläne der Gasnetzbetreiber in Richtung klimaneutrale Gase. Die zweite Phase des sogenannten Gasnetzgebietstransformationsplans zeigt auch das große Interesse seitens Kommunen und Industrie.

Dr. Kirsten Westphal machte klar, wie man beim Bundesverband der Energie- und Wasserwirtschaft (BDEW) die Zukunft auf dem Wärmemarkt sieht: „Anstelle von Erdgas werden zukünftig vor allem Wasserstoff und seine Derivate zum Einsatz kommen“, sagte das Mitglied der Hauptgeschäftsführung auf der Veranstaltung in Köln. Dabei werde der Wasserstoff sowohl aus heimischer Produktion als auch, zu erheblichen Anteilen, aus Importen stammen. Beim BDEW macht man sich keine Sorgen, dass es hier zu einer Mangelsituation kommt. „Die Studienlage zeigt, dass ausreichende Mengen an Wasserstoff verfügbar gemacht werden können“, konstatierte Westphal.

---------- Werbung ----------

Allerdings benötigt der Hochlauf der Wasserstofferzeugung die richtigen Rahmenbedingungen. Dazu zählt die BDEW-Vertreterin neben der Beschleunigung und Stärkung des Ausbaus erneuerbarer Energien in Deutschland auch die schnelle Notifizierung der IPCEI-Projekte (IPCEI: Important Projects of Common European Interest) für Wasserstofferzeugung durch die EU, die dann Ende des Jahres tatsächlich erfolgte (s. S. 20), sowie weitere ergänzende Förderprogramme zur Erreichung des Elektrolyseziels von 10 GW im Jahr 2030.

---------- Werbung ----------

Auf der Importseite fordert Westphal von der Politik die kurzfristige Vorlage einer Importstrategie ein. Zudem sollte auch die Finanzierung von Importprojekten durch Maßnahmen flankiert werden, etwa durch Hermesdeckungen oder Kapitalzuschüsse.

---------- Werbung ----------

Aufbau eines funktionierenden H2-Handelsmarktes

---------- Werbung ----------

Ein Aspekt von besonderer Bedeutung ist jedoch, den Hochlauf der Wasserstofferzeugung in die Entwicklung eines Marktes einzubetten. In den verschiedenen Phasen werden hier jeweils andere politische Instrumente benötigt: zu Beginn mehr Steuerung und Förderung, später zunehmend Markt und weniger Förderung. Zielbild ist ein funktionierender Handelsmarkt, auf dem Wasserstoffmengen nach marktwirtschaftlichen Mechanismen effizient verteilt werden.

Doch was kennzeichnet das Zielbild des eingeschwungenen Wasserstoffmarkts? Dazu nannte die BDEW-Expertin in Köln ein ganzes Bündel an Kriterien:

---------- Werbung ----------
  • Erzeugung und Handel von Wasserstoff und seinen Derivaten in Deutschland, der EU und global in ausreichenden Mengen
  • Die Kombination aus Langfristverträgen (insbesondere auf der Importstufe) mit wettbewerbsfähigen Preisen, die die aktuellen Marktbedingungen reflektieren, sowie zunehmend Spotlieferungen
  • Der Handel von Herkunftsnachweisen, Zertifikaten und Commodity auf einem einheitlichen, standardisierten europäischen Markt inkl. eines internationalen Anschlusses
  • Wettbewerb beim Zugang zum Endkunden sowie auf der Anbieterseite transparente Preissignale und hinreichende Marktliquidität
  • Eine voll funktionsfähige und umspannende Netzinfrastruktur. Ein diskriminierungsfreier Netzzugang für alle wettbewerblichen Akteure auf dem Wasserstoffmarkt. Der H2-Netzzugang basiert dabei im Grundsatz auf dem Entry-Exit-System.
  • Klimaneutraler Wasserstoff wird überall dort eingesetzt, wo Nachfrage besteht. Dabei richtet sich die Nachfrage nach dem Marktpreis.
  • Speicher sichern die Versorgungssicherheit für Wasserstoff sowie Derivate ab und eröffnen verschiedene Flexibilisierungen des Wasserstoffmarktes. Es gibt sowohl dezentrale Erzeugung und Abnahme als auch zentrale Speicher.

Bei all diesen Vorhaben sind laut Westphal eine transparente und integre Standardisierung sowie Zertifizierungen vonnöten, auch um eine Akzeptanz für Wasserstoff und seine Derivate zu schaffen, wozu es zudem einen stabilen Regulierungsrahmen braucht.

Standardisierung von besonderer Bedeutung

Das Etablieren von Standards ist auch aus der Sicht von Dr. Thomas Gößmann das Mittel der Wahl. Dabei gilt es laut dem Thyssengas-Chef zu berücksichtigen, dass die Genehmigungsbehörden mit dem Thema Wasserstoff bislang nur wenige Berührungspunkte und daher in den meisten Fällen noch keine Erfahrung haben.

Für das Exportland Deutschland sei die Verständigung auf internationale Standards von besonderer Bedeutung, konstatierte auf der gat auch die Ministerialdirigentin im Bundesministerium für Bildung und Forschung (BMBF), Oda Keppler. Dies gelte unter anderem auch für die Qualitätskriterien für das Produkt Wasserstoff, da sonst der internationale Handel nicht in Gang komme.

Für den Erfolg der Wasserstoffwirtschaft ist es laut Gößmann zudem entscheidend, die Bevölkerung einzubinden: „Wenn es dem Land der Ingenieure gelingt, die Menschen mitzunehmen, dann werden wir es auch schaffen“, ist sich der Thyssengas-Chef sicher. Dabei sei es auch wichtig, den Fokus nicht zu sehr auf die Farbenlehre des Wasserstoffs zu richten. Diese sei für viele Menschen sowieso kaum nachvollziehbar: „Wir sind farbenblind. Wir stellen die Autobahn, wer darüberfährt, ist uns egal“, sagte der Netzbetreiber.

Dr. Frank Reiners ist sich sicher, dass es mit der Wasserstoffwirtschaft nur richtig losgehen wird, wenn es gelingt, die gesamte Wertschöpfungskette zu bespielen. Nach Einschätzung des Mitglieds der Geschäftsführung von Open Grid Europe ist dabei jedoch der Leitungsbau von besonderer Bedeutung. Deutschland habe hier als Drehscheibe eine besondere Rolle und Verantwortung, da viele Gaspipelines hier anlanden beziehungsweise zusammenkommen. „Wir können es uns nicht leisten, nichts zu tun“, konstatierte Reiners in Köln.

Abb. 2: Prof. Gerald Linke, Vorstandsvorsitzender des DVGW, sagte bei der Eröffnung der Branchenveranstaltung gat in Köln: „Das Backbone-Netz muss allen Regionen in Deutschland den Zugang zu klimaneutralem Wasserstoff ermöglichen.“

H2-Kernnetz für alle Regionen

Beim Deutschen Verein des Gas- und Wasserfaches (DVGW) begrüßt man den Vorstoß der Bundesregierung, in einer Novelle des Energiewirtschaftsgesetzes einen gesetzlichen Rahmen für die schnelle Genehmigung und den Aufbau eines Wasserstoffkernnetzes zu etablieren. Allerdings geht dem DVGW dieser Ansatz nicht weit genug: „Das Backbone-Netz muss allen Regionen in Deutschland den Zugang zu klimaneutralem Wasserstoff ermöglichen, da sonst eine Abwanderung ganzer Wirtschaftszweige droht, insbesondere im Bereich des Mittelstands“, sagte der DVGW-Chef Prof. Gerald Linke auf der Branchenveranstaltung.

In einem zweiten Schritt brauche es deshalb auch eine Transformationsregulierung für Gasverteilnetze. Ohne eine umfassende Umstellung der bestehenden Gasverteilinfrastruktur sei es nicht möglich, die Anschlüsse von 1,8 Mio. Industrie- und Gewerbekunden in Richtung Klimaneutralität zu transformieren, betont Linke.

Die Grundlage für den Transport zu den Endkunden hat der DVGW gemeinsam mit der Initiative H2vorOrt im sogenannten Gasnetzgebietstransformationsplan (GTP) geschaffen. Im aktuellen zweiten Planungsjahr haben sich daran 241 Gasverteilnetzbetreiber beteiligt, eine deutliche Steigerung gegenüber den 180 Unternehmen im Vorjahr. Aktuell deckt der GTP nun Gasleitungen mit einer Gesamtlänge von 415.000 km ab und erreicht 381 der insgesamt 401 deutschen Landkreise.

Der Planungsprozess beim GTP ist bewusst ergebnisoffen angelegt und umfasst sowohl die Umnutzung, die Stilllegung und den partiellen Neubau von Leitungen. Berücksichtigt werden sämtliche neuen, klimaneutralen Gase, also neben Wasserstoff etwa auch Biomethan. Ziel des GTP ist es, die Transformation auf Verteilnetzebene zu beschleunigen und durch die Einzelplanungen der Netzbetreiber in Abstimmung mit den anderen Stufen der Versorgungskette ein kohärentes Zielbild für ganz Deutschland zu schaffen. Im Rahmen der GTP-Planung analysieren die Netzbetreiber dabei auf Basis ihrer konkreten Situation vor Ort die Bedarfe ihrer Kunden, die dezentrale Einspeisesituation, die Entwicklung der Wasserstoffbereitstellung durch vorgelagerte Netzbetreiber und die technische Eignung ihrer Netze für Wasserstoff.


Erstmals in Deutschland wurde auf der OGE-Verdichterstation Emsbüren mit der Umstellung einer Ferngasleitung auf den Transport von Wasserstoff begonnen

Kommunen und Industrie planen mit Wasserstoff

Teil des GTP ist auch eine Befragung der Endkunden durch die jeweiligen Netzbetreiber. Diese ergab einen deutlichen Zuspruch zum Einsatz klimaneutraler Gase. So sehen langfristig lediglich fünf Prozent der knapp 1.000 befragten Kommunen keinen Bedarf für die Verwendung klimaneutraler Gase. Von den knapp 2.000 antwortenden industriellen Großkunden setzen mehr als drei Viertel auf Wasserstoff. 29 Prozent sehen bereits bis zum Jahr 2030 eine Option für den Einsatz von Wasserstoff, weitere 30 Prozent erwarten einen solchen in der kommenden Dekade.

Einige aktuelle Projekte zeigen, dass diese Visionen bereits in die Tat umgesetzt werden. So fiel Mitte Oktober auf der Verdichterstation Emsbüren des Netzbetreibers OGE in Niedersachsen der Startschuss zur Umstellung der ersten Ferngasleitung für den Transport von Wasserstoff (s. Abb. 3). Als Teil des Projekts GET H2 Nukleus soll damit der Kern für eine bundesweite Wasserstoffinfrastruktur etabliert werden. Mit der Umstellung wollen die beteiligten Netzbetreiber Abnehmern aus Industrie und Mittelstand einen Anschluss an die Wasserstoffversorgung ermöglichen.

Die meisten der befragten Kommunen setzen laut einer DVGW-Umfrage langfristig auf klimaneutrale Gase

Ein weiteres Projekt startete Anfang November im Energiepark Bad Lauchstädt mit dem Beginn der zweiten Phase der Umstellung einer Gastransportleitung für den Wasserstofftransport. Für den technisch einwandfreien Betrieb des Leitungsnetzes der Zukunft des Fernleitungsnetzbetreibers Ontras Gastransport wurde eine Molchschleuse eingehoben. In den folgenden Monaten wird die Inbetriebnahme der Wasserstoffleitung weiter vorbereitet. Dazu ist der Bau einer Übergabestation sowie die Einrichtung der Anlage zur Gasreinigung und -trocknung notwendig. Bis zur vollständigen Inbetriebnahme des Energieparks Bad Lauchstädt im Jahr 2025 folgen dann bereits Testtransporte von Wasserstoff, die wissenschaftlich durch das DBI – Gastechnologisches Institut gGmbH Freiberg begleitet werden.

Solche Projekte tragen dazu bei, zunehmend die Standortvorteile des Kontinents zu adressieren. Prof. Thomas Thiemann von Siemens Energy brachte die Situation auf der gat in Köln so auf den Punkt: „Europa hat mit dem großen Pipelinenetz und den Speichern ein riesiges Asset gegenüber anderen. Diesen Vorteil müssen wir ausspielen.“

    
76 Prozent der befragten Industriekunden haben Interesse an Wasserstoff

Studie: Grüner Wasserstoff langfristig nicht teurer als Gas
Die Endkundenpreise für grünen Wasserstoff könnten mittel- und langfristig im Bereich von Erdgas beziehungsweise der heute geltenden Gaspreisbremse von 12 ct/kWh liegen. Das hat eine Studie von Frontier Economics im Auftrag des DVGW ermittelt. Vergleicht man die Gesamtkosten – also Kosten für Anschaffung, Gebäudesanierung und Betrieb –, liegt danach sowohl bei Einfamilien- als auch bei Mehrfamilienhäusern eine mit Wasserstoff betriebene Gastherme je nach Gebäudetyp und Effizienzklasse auf einem ähnlichen Niveau wie eine elektrisch betriebene Wärmepumpe. In der Studie wurden die Gesamtkosten verschiedener Energieträger für Haushalte sowie für exemplarische Wärmeversorgungslösungen miteinander verglichen.

Für den Kostenvergleich wurden indikative Endkundenpreise, die auf Gestehungskosten basieren, herangezogen. Neben den Preisen für gasförmige Energieträger vergleicht die DVGW-Studie auch die Gesamtkosten, die auf Haushalte je nach Wärmeversorgungslösung zukommen können. Denn mit Blick auf die Einhaltung der Klimaziele muss die Wärmeerzeugung für die Gebäude in Deutschland grundlegend umgestellt werden, so der DVGW.

Ziel der Untersuchung ist es einerseits, die Endkundenpreise von grünem Wasserstoff ins Verhältnis zu alternativen Energieträgern für Haushalte in den Jahren 2035 und 2045 zu setzen. Andererseits fokussiert die Analyse auf die Gesamtkosten verschiedener Wärmeversorgungslösungen bei zwei ausgewählten Gebäudetypen der Effizienzklassen B und D. Betrachtet werden Grüngasthermen auf Basis von Biomethan und klimaneutralem Wasserstoff sowie Wärmepumpen.

Insgesamt zeigt der Vergleich, dass die Kostenrelationen der Energieträger sich über den betrachteten Zeitraum verändern: Während die Endkundenpreise für klimaneutralen Wasserstoff in Deutschland bis zum Jahr 2035 voraussichtlich noch über denen für Erdgas und Biomethan liegen, könnten sie bis 2045 ein vergleichbares Niveau erreichen.

Haushalte in Deutschland müssten demnach im Jahr 2035 zwischen 12 und 17 ct/kWh für Wasserstoff bezahlen. Der Preis für Erdgas läge hingegen, unter Berücksichtigung steigender CO2-Preise, zwischen 9 und 11 ct/kWh und der für Biomethan knapp darüber, bei etwa 10 bis 13 ct/kWh, je nach verwendeter Biomasse bei seiner Erzeugung.

Nach 2035 könnten die Endkundenpreise für Wasserstoff sinken und sich denen von Erdgas annähern. Wesentliche Treiber hierfür sind unter anderem die Degression der Kosten für die H2-Produktion sowie steigende CO2-Preise im Rahmen des Emissionshandels. Im Jahr 2045 könnten dann laut Studie die Bezugskosten für Wasserstoff auf rund 11 bis 15 ct/kWh sinken.

Autor: Michael Nallinger

Erprobung von BZ-Bussen und ihren H2-Tankstellen

Erprobung von BZ-Bussen und ihren H2-Tankstellen

Zwischenbilanz zur Analyse der Leistungsfähigkeit
Elektromobilität

Brennstoffzellenbusse (BZ-Busse) werden seit rund 20 Jahren erprobt. Mit europäischer Förderung laufen derzeit Demonstrationsprojekte mit rund 300 dieser Fahrzeuge. Die Leistungsfähigkeit der Busse und ihrer Wasserstofftankstellen wird auf der Basis von Betriebsdaten analysiert. Dieser Artikel möchte anhand ausgewählter Indikatoren eine Zwischenbilanz ziehen, inklusive Vergleichen mit den Ergebnissen bereits abgeschlossener Projekte. Insgesamt zeigen die Busse ein positiveres Bild als die Tankstellen.

Im Rahmen der Projekte JIVE und JIVE 2 (2017 bis 2024 bzw. 2018 bis 2025) sind die Busse an 16 Standorten in sechs Ländern im Einsatz (s. Abb. 2). Die örtlichen Flotten umfassen fünf bis 54 BZ-Busse. Zum Einsatz kommen einstöckige 12-m-Solobusse, Doppeldecker (in Großbritannien) sowie an einem Standort straßenbahnähnliche 18-m-Gelenkbusse. Die Wasserstofftankstellen wurden zum Teil aus einem weiteren Projekt namens MEHRLIN gefördert (Projektende: 30. Juni 2023).

---------- Werbung ----------

Standorte der Projekte JIVE, JIVE 2 und MEHRLIN (Aberdeen, Auxerre, Barcelona, Birmingham, Bozen, Brighton, Emmen, Gelderland, Groningen, Region Köln, London, Pau, Südholland, Toulouse, Wiesbaden und Wuppertal) sowie Länder mit Beobachter-Regionen. Wegen einer Neuausrichtung beim Busbetreiber ist der Standort Wiesbaden nicht mehr aktiv.

---------- Werbung ----------

Zu den Aktivitäten im Arbeitspaket „Monitoring and Analysis“ gehören neben dem hier auszugsweise vorgestellten „Performance Assessment“ auch ein Umwelt- und Kostenvergleich zwischen BZ- und Batteriebussen [1] und die Dokumentation von „Best Practice“ [2].
Aus Gründen der Vertraulichkeit wurden die Ergebnisse so aggregiert, dass keine Rückschlüsse auf einzelne Standorte möglich sind, soweit die Informationen nicht ohnehin bereits öffentlich zugänglich sind.

---------- Werbung ----------

Stand Mitte 2023
Bis Ende Juni 2023 (Stand der Datenbasis im Folgenden) legten die Busse rund 13 Millionen Kilometer zurück. In über 63.000 Tankvorgängen wurden mehr als 1 Million Kilogramm Wasserstoff abgegeben.

---------- Werbung ----------

Verfügbarkeit der Brennstoffzellenbusse


Verfügbarkeit der Busse in JIVE/JIVE 2 im Vergleich mit früheren Projekten

---------- Werbung ----------

Abbildung 3 zeigt einen Vergleich der Verfügbarkeit in den größeren Projekten zur Erprobung von Brennstoffzellenbussen seit 2001. Die Kastengrafiken zeigen jeweils die Maximal- und Minimalwerte, die beiden mittleren Quartile und, als waagrechte Linie innerhalb des Kastens, den Median.

Die BZ-Busse bis 2009 in den Projekten CUTE und HyFLEET:CUTE waren noch nicht hybridisiert, das heißt, es gab keine Batterie zur Unterstützung der Brennstoffzelle und keine Möglichkeit zur Rückgewinnung von Bremsenergie. Da pro Standort stets zwei Monteure der Hersteller anwesend waren, um Probleme zu beheben, war die Verfügbarkeit der Fahrzeuge vergleichsweise hoch.

Kastengrafiken (Box-Plots) sind ein Werkzeug zur aggregierten grafischen Darstellung von Daten, die mehr Information vermitteln können als zum Beispiel Mittelwerte und Standardabweichungen. Der Median ist der zentrale Wert einer auf- oder absteigend sortierten Liste von Daten. Bei Werten von beispielsweise 90 % – 90 % – 85 % – 80 % – 60 % – 40 % – 10 % beträgt der Median 80 %, der Mittelwert dagegen 65 %. Die beiden mittleren Quartile umfassen das Viertel aller Werte über und unter dem Median und sind somit ein Indikator dafür, wie stark die zentrale Hälfte aller Werte um den Median streut.

Ein signifikanter Vergleich ist daher vor allem zwischen dem Projekt CHIC mit der ersten Generation hybridisierter BZ-Busflotten (2010 bis 2016) und JIVE/JIVE 2 (seit 2017/18) möglich. Abbildung 3 zeigt eine deutliche Verbesserung der Bus-Verfügbarkeit in den aktuellen Projekten. Einzelne Standorte erreichen mehr als 99 Prozent, während nicht alle an das Ziel von über 90 Prozent herankommen.

Ausfallzeiten werden zumeist nicht von Komponenten verursacht, die dem Brennstoffzellenantrieb zuzuordnen sind, sondern Auslöser sind häufig konventionelle Bauteile. Längere Ausfallzeiten entstanden zum Beispiel dadurch, dass ein Hersteller unter anderem die Halterungen für die Wasserstofftanks verstärken musste, da die Vibrationen in Bussen ohne Dieselmotor unterschätzt worden waren. Bei einem anderen Fabrikat mussten die Klimaanlagen getauscht werden.

Laufleistung
Die Busse haben gezeigt, dass 500 Kilometer pro Tag beziehungsweise ohne Zwischenbetankung zurückgelegt werden können. Geringere Laufleistungen resultieren aus den örtlichen Einsatzbedingungen, also nicht aus Beschränkungen, die sich aus dem Wasserstoff-/Brennstoffzellenantrieb ergeben. Ein Standort setzt die Fahrzeuge zum Beispiel als Vorfeldbusse auf dem Flughafen ein, wo kurze Wege zurückzulegen sind. Insgesamt erfüllen die Fahrzeuge die Erwartungen der Betreiber.

Spezifischer Kraftstoffbedarf


Entwicklung des spezifischen Kraftstoffbedarfs von Projekt zu Projekt. Seit CHIC sind die Antriebe hybridisiert.

Abbildung 4 zeigt, wie sich der Kraftstoffbedarf pro 100 Kilometer Laufleistung entwickelt hat. Von CUTE zu HyFLEET:CUTE wurde zunächst der nicht-hybridisierte Antrieb optimiert. Ein Effizienzsprung ergab sich durch die Hybridisierung im Projekt CHIC. Im Rahmen von JIVE/JIVE 2 werden noch einmal deutlich geringere Werte von bis zu 6,5 kg/100 km erreicht. Damit wird das Projektziel von 9 kg/100 km für Solobusse in der Regel deutlich unterboten, selbst von den Doppeldeckern. Auch die 18-m-Fahrzeuge unterschreiten das Ziel von 14 kg/100 km klar.

Der saisonale Einfluss der Umgebungstemperatur beziehungsweise der Einfluss des Heizenergiebedarfs auf den Kraftstoffverbrauch konnte bespielhaft für zwei Standorte ermittelt werden, deren Fahrzeuge keine Klimaanlage besitzen, die also ohne Energiebedarf für Kühlung im Sommer auskommen. Hier variiert der Kraftstoffverbrauch über das Kalenderjahr um ca. ± 1 bis 2 kg/100 km bzw. ± 15 bis 20 %.

Zwischenfazit
Aufgrund der positiven Erfahrungen mit den BZ-Bussen haben sich einige Standorte entschlossen, weitere Fahrzeuge dieses Typs zu beschaffen. Hervorzuheben ist hier der Regionalverkehr Köln, der über die 50 in JIVE beziehungsweise JIVE 2 geförderten Busse hinaus bereits Verträge für bis zu 100 weitere Einheiten geschlossen hat. Andererseits wurde die Erweiterung der Flotte an einem anderen Standort zurückgestellt, weil es erhebliche Probleme mit der Wasserstofftankstelle gab; mehr dazu im Folgenden.

Vertankte Wasserstoffmengen


Vertankte Wasserstoffmengen pro Quartal als Summe aller Standorte

Bis Mitte 2023 wurden an 18 Tankstellen mehr als 1 Million Kilogramm Wasserstoff abgegeben. Die zeitliche Entwicklung ist in Abbildung 5 dargestellt. Die Quartalswerte für 2020 sind gering, da – bedingt durch die Corona-Pandemie – erst wenige Fahrzeuge in Betrieb waren beziehungsweise gingen und die Laufleistungen häufig geringer waren als sonst üblich. 2021 begann ein deutlicher Anstieg, unterbrochen von einem Rückgang im ersten Quartal 2022. Letzterer war bedingt durch:

–    Probleme mit den Bussen an mehreren Standorten, insbesondere bedingt durch Nachrüstungen wegen der unerwartet starken Vibrationen

–    Probleme an mehreren Tankstellen, die in einigen Fällen den Busbetrieb länger zum Erliegen brachten

–    Steigende Energie- bzw. Wasserstoffpreise nach dem Angriff auf die Ukraine, weshalb einige Betreiber den Einsatz ihrer BZ-Busse reduzierten

Seit dem zweiten Quartal 2022 steigen die Werte wieder nahezu stetig, auch bedingt durch die Inbetriebnahme weiterer Busse. Die Tankstellen stoßen in der Regel nicht an ihre Kapazitätsgrenzen: Durch den unerwartet niedrigen spezifischen Kraftstoffbedarf der Busse und die zeitweise geringeren Laufleistungen als geplant sind einige der Tankstellen zeitweise erheblich unterausgelastet.

Verfügbarkeit der Wasserstofftankstellen


Verfügbarkeit der Tankstellen in JIVE/JIVE 2/MEHRLIN im Vergleich mit früheren Projekten

Das Mindestziel für die Verfügbarkeit der Wasserstofftankstellen in JIVE, JIVE 2 und MEHRLIN ist größer 98 Prozent, wobei 99 Prozent angestrebt werden. Dabei bleiben Zeiten der Nichtverfügbarkeit für planmäßige Wartung unberücksichtigt. Abbildung 6 zeigt, dass dieses Mindestziel von weniger als der Hälfte der Standorte erreicht wird (der Median liegt unter 98 %). Im Projekt CHIC waren die Tankstellen durchschnittlich deutlich verfügbarer, bei einem Zielwert von ebenfalls über 98 Prozent.

Die Ursachen für geringe Verfügbarkeiten lassen sich, aus der Perspektive der Betankungseinheit, in zwei Bereiche aufgliedern:

–    Externe Gründe bedeuten, dass die Wasserstofferzeugung vor Ort ausgefallen ist oder die Anlieferung von Wasserstoff nicht rechtzeitig erfolgt ist oder beides, so dass keine Betankungen möglich sind. Dies ist an zahlreichen Tankstellen zeitweise eingetreten.

–    Interne Gründe bedeuten, dass wegen technischer Probleme keine Betankungen möglich sind. Davon sind alle Tankstellen betroffen, wenn auch in deutlich unterschiedlichem Maße.

Dabei haben sich die wesentlichen Ursachen für Ausfälle von Wasserstofftankstellen für Busse aus internen Gründen in den letzten 20 Jahren kaum verändert. Sie umfassen insbesondere Probleme mit

–    Wasserstoffkompressoren

–    den Komponenten zur Betankung, insbesondere den Füllkupplungen mit ihren empfindlichen Infrarot-Sensoren zur Datenübertragung vom Bus an die Tankstelle

–    der Qualität bzw. Schnelligkeit des Hersteller-Services, d. h. Ausfälle wären teilweise vermeidbar gewesen oder dauern unnötig lange.

Hinzu kommen, nach dem Wechsel zu Typ-4-Tanks auf den meisten Bussen der aktuellen Generation, Herausforderungen bei der Vorkühlung des Wasserstoffs zur Gewährleistung einer hinreichend schnellen und vollständigen Befüllung, bedingt durch Softwareprobleme und fehlende anerkannte Betankungsprotokolle.

Die Partner des JIVE/JIVE 2/MEHRLIN-Konsortiums sehen die Gefahr, dass die breite Einführung von BZ-Bussen an einem Mangel an verlässlicher Betankungsinfrastruktur scheitern könnte.

Zusammenfassung

Die Erprobung der BZ-Busse und Wasserstofftankstellen in den Projekten JIVE, JIVE 2 und MEHRLIN wurde beziehungsweise wird durch eine Reihe externer Faktoren negativ beeinflusst. Dazu gehören die Corona-Pandemie, gestiegene Wasserstoffpreise und Probleme mit der Wasserstoffbelieferung.

Positiv ist festzuhalten, dass einige Standorte sich aufgrund guter Erfahrungen bereits vor Projektabschluss entschieden haben, ihre BZ-Bus-Flotte zu erweitern.

Die Busse zeigen insgesamt eine bessere Leistungsfähigkeit als die Fahrzeuge der Vorgängergeneration, auch wenn bislang nicht an allen Standorten die Zielwerte, wie eine Verfügbarkeit von mindestens 90 Prozent, erreicht werden. Insbesondere ist die in JIVE/JIVE 2 deutlich verbesserte Effizienz der Busse hervorzuheben.

Bei der Verfügbarkeit der Wasserstofftankstellen ist bisher keine generell positive Entwicklung zu erkennen. Ausfälle der Tankstellen wegen interner technischer Probleme haben im Einzelfall zu einem längeren Stillstand der lokalen BZ-Bus-Flotte geführt. Es ist bemerkenswert, dass auch nach rund 20 Jahren Erfahrung mit Tankstellen auf 350-bar-Druckniveau die Probleme mit einigen ihrer Komponenten nicht gelöst werden konnten.

Danksagung

Die Projekte JIVE und JIVE 2 werden von Clean Hydrogen Partnership (vormals Fuel Cells and Hydrogen Joint Undertaking) im Rahmen der Zuwendungsvereinbarungen Nr. 735582 bzw. 779563 gefördert. Clean Hydrogen Partnership erhält Unterstützung aus dem Horizon-2020-Programm der Europäischen Union für Forschung und Innovation sowie von Hydrogen Europe und Hydrogen Europe Research. Das Projekt MEHRLIN wurde aus Mitteln der Connecting Europe Facility der Europäischen Union kofinanziert.

Die Ergebnisse wurden erstmals auf der Zero Emission Bus Conference 2023 vorgestellt.

Literatur

[1]        A. Zimmerer, S. Eckert und V. Roderer, Environmental Impacts and External Cost Benefits of Fuel Cell Buses. Comparison of Fuel Cell Buses with Battery Electric Buses, 2023. https://fuelcellbuses.eu/publications.

[2]        K. Buss, K. Stolzenburg, N. Whitehouse and S. Whitehouse, JIVE Third Best Practice and Commercialisation Report / JIVE 2 Second Best Practice Information Bank Report, 2022. https://fuelcellbuses.eu/publications.

AutorInnen:
Klaus Stolzenburg
Ingenieurbüro PLANET GbR, Oldenburg
k.stolzenburg@planet-energie.de
Katharina Buss
Ingenieurbüro PLANET GbR, Oldenburg
k.buss@planet-energie.de
Vanessa Roderer
Sphera Solutions GmbH, Leinfelden-Echterdingen
VRoderer@sphera.com
Stefan Eckert
Sphera Solutions GmbH, Leinfelden-Echterdingen
SEckert@sphera.com

 

Das Neue HZwei-Magazin ist da – Druckfrisch und bereit zu informieren!

Das Neue HZwei-Magazin ist da – Druckfrisch und bereit zu informieren!

Liebe Leserinnen und Leser, wir freuen uns, Ihnen die neueste Ausgabe des HZwei-Magazins vorstellen zu dürfen! Diese frische Print-Version ist ab sofort verfügbar und bietet Ihnen eine Fülle von Einblicken in die aufregende Welt des Wasserstoffs und der Brennstoffzellen. Wir möchten Ihnen nicht nur einen Vorgeschmack auf die spannenden Themen dieser Ausgabe geben, sondern auch über die Möglichkeiten informieren, wie Sie das Magazin in den Händen halten können.

Rund um Wasserstoff und Brennstoffzellen: Das HZwei-Magazin

Das HZwei-Magazin ist Ihre Quelle für fundierte Informationen über die Wasserstoff- und Brennstoffzellentechnologie. In dieser Ausgabe werfen wir einen genauen Blick auf die folgenden Themen:

---------- Werbung ----------
  • Wasserstoffmobilität im Wandel: Erfahren Sie, wie Wasserstofffahrzeuge die Straßen erobern und wie sich die Mobilitätslandschaft entwickelt.
  • Grüner Wasserstoff: Tauchen Sie ein in die Welt der nachhaltigen Wasserstoffproduktion und -nutzung, die einen Schlüssel zur Dekarbonisierung darstellt.
  • Wasserstoff in der Industrie: Entdecken Sie, wie Unternehmen Wasserstoff in ihren Produktionsprozessen einsetzen, um umweltfreundlicher zu werden und die Effizienz zu steigern.
  • Internationale Entwicklungen: Verfolgen Sie die neuesten Entwicklungen und Projekte rund um den Globus, die die Wasserstoffwirtschaft vorantreiben.
  • Interviews und Expertenmeinungen: Hören Sie von Branchenexperten und Pionieren, die ihre Einblicke und Visionen teilen.

Die Print-Version ist da!

Während die digitale Version bereits vor einigen Tagen veröffentlicht wurde und für alle unsere Abonnenten kostenlos zum Download bereitsteht, ist die Print-Ausgabe jetzt ebenfalls erhältlich. Für diejenigen unter Ihnen, die das physische Leseerlebnis bevorzugen, bieten wir die Print-Ausgabe auch im Kombi-Abonnement an. So erhalten Sie Ihr Exemplar automatisch und bequem nach Hause geliefert.

---------- Werbung ----------

Abonnieren Sie HZwei und Bleiben Sie am Puls der Wasserstoffwelt!

Mit einem Abonnement von HZwei verpassen Sie keine Ausgabe und bleiben stets informiert über die neuesten Entwicklungen, Innovationen und Erfolgsgeschichten in der Wasserstoff- und Brennstoffzellenbranche. Seien Sie Teil unserer globalen Gemeinschaft von Wasserstoff-Enthusiasten und gestalten Sie die Zukunft der sauberen Energie mit! Wir laden Sie herzlich ein, das HZwei-Magazin zu abonnieren und sich auf eine aufregende Reise in die Welt des Wasserstoffs und der Brennstoffzellen zu begeben. Besuchen Sie unsere Webseite, um mehr zu erfahren und Ihr Abonnement noch heute abzuschließen. Vielen Dank, dass Sie Teil unserer Wasserstoff-Community sind, und wir freuen uns darauf, gemeinsam die Zukunft der nachhaltigen Energie zu gestalten! Mit besten Grüßen, Ihr HZwei-Team

---------- Werbung ----------
Neue Leitung für das Norddeutsche Reallabor

Neue Leitung für das Norddeutsche Reallabor

Nachruf auf Professor Werner Beba

Mike Blicker wird neuer Projektkoordinator des Norddeutschen Reallabors (NRL), eines Verbundprojekts zum Einsatz von grünem Wasserstoff in der Praxis. Um verschiedene Wege zu einem klimaneutralen Energiesystem zu erproben, haben sich mehr als 50 Partner aus Wirtschaft, Wissenschaft und Politik zu diesem Reallabor zusammengeschlossen, das vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) und vom Bundesministerium für Digitales und Verkehr (BMDV) gefördert wird. Der Umweltingenieur und Verfahrenstechniker hatte die Leitungsfunktion nach dem Tod des bisherigen Projektkoordinators, Professor Dr. Werner Beba, kommissarisch übernommen und war zuvor dessen Stellvertreter. Außerdem forschte Blicker bereits in den NRL-Arbeitsgruppen „Wärme und Quartiere“ sowie „Industrie“, und er gehörte zur Leitung des HAW-Forschungsprojekts X-Energy.

Prof. Werner Beba hat das Norddeutsche Reallabor aufgebaut und mit großem Engagement und persönlicher Überzeugung geleitet. Zugleich war er Leiter des Competence Center für Erneuerbare Energien und Energieeffizienz (CC4E) an der Hochschule für Angewandte Wissenschaften Hamburg (HAW). Im Februar dieses Jahres ist er nach schwerer Krankheit im Alter von 66 Jahren verstorben. Sein Nachfolger als Leiter des CC4E wird Hans Schäfers, der seit 2017 als Professor für intelligente Energiesysteme und Energieeffizienz an der HAW Hamburg tätig ist und im Rahmen des NRL bereits die Arbeitsgruppe „Gesamtintegration“ leitete. Der promovierte Umwelttechniker und ehemalige Energieberater Schäfers wird nun auch neues Mitglied der NRL-Projektsteuerungsgruppe, eine Position, die zuvor ebenfalls Werner Beba innehatte.

---------- Werbung ----------

Der 1956 in Bremen geborene Beba ging nach seinem Studium an der Helmut-Schmidt-Universität der Bundeswehr ins Management des Medienkonzerns Gruner+Jahr, wo er unter anderem als Verlagsgeschäftsführer tätig war. 2008 wechselte der Wirtschaftswissenschaftler an die HAW Hamburg, übernahm dort den Lehrstuhl für Marketing und gründete das CC4E, das interdisziplinär an der Systemintegration von erneuerbaren Energien samt Speichern und Sektorenkopplung arbeitet. Mit seinem kommunikativen Talent gelang es dem ehemaligen Medienmanager, ganz unterschiedliche Menschen aus Forschung, Wirtschaft und Politik für die Notwendigkeit der Energiewende und den Klimaschutz zu begeistern.

---------- Werbung ----------

Autorin: Monika Rößiger

---------- Werbung ----------
Axel Funke kommt zu Apex

Axel Funke kommt zu Apex

Die Apex Group vergrößert ihr Führungs-Team von fünf auf sechs Personen. Axel Funke ist seit dem neuen Jahr als Chief Technology Officer tätig und wird die Bereiche Projektabwicklung und Engineering verantworten. Der 58-jährige Maschinenbau-Ingenieur ist seit 30 Jahren im Anlagenbau aktiv und hat bislang für Unternehmen wie Bilfinger, thyssenkrupp Industrial Solutions und Linde gearbeitet. Er leitete unter anderem internationale Großprojekte im Energiesektor und war beispielsweise bei thyssenkrupp Industrial Solutions an der Planung des Projekts HyLIOS beteiligt, in dessen Rahmen ein 2,2-GW-Elektrolyseur an Neom, Saudi-Arabien, geliefert wurde.

Apex gehört seit einem Jahr zur Exceet Group. Roland Lienau, Chairman von Exceet, sagte: „Nach der jüngst erfolgten Berufung von Bert Althaus als CFO ist das Management nun über alle Bereiche mit Spitzenpersonal besetzt. Auch auf der operativen Seite hat Apex seit der Übernahme durch Exceet im Januar 2023 mehr als 20 Ingenieure eingestellt. Wir sind also für die Realisierung der Wachstumsstrategie gerüstet.“

---------- Werbung ----------
NRL identifiziert Einsatzgebiete für energieintensive Industriezweige

NRL identifiziert Einsatzgebiete für energieintensive Industriezweige

Mehr als 50 Partner aus Wirtschaft, Wissenschaft und Politik haben sich in dem Verbundprojekt Norddeutsches Reallabor (NRL) zusammengeschlossen, um die Energiewende durch die Erprobung der wasserstoffbasierten Sektorenkopplung voranzubringen. Zum Beispiel indem sie aus Windstrom per Elektrolyse Wasserstoff erzeugen, den sie in rund 200 E- oder H2-Nutzfahrzeugen sowie mehreren H2-Tankstellen im Realbetrieb testen oder indem sie industrielle Abwärme im Umfang von 700 GWh pro Jahr erschließen.

Trotz schwieriger Bedingungen wegen Energie- und Haushaltskrise sowie unklarer gesetzlicher Rahmenbedingungen kommen diese Projekte gut voran. Die drei beteiligten Bundesländer Schleswig-Holstein, Mecklenburg-Vorpommern und Hamburg wollen ihre Vorreiterrolle in Sachen Wasserstoff weiter ausbauen, betonten deren Vertreter beim diesjährigen NRL-Konsortialtreffen am 1. Dezember 2023 im Schloss Schwerin vor rund 100 Experten. Ideale Voraussetzungen bestünden schon allein deshalb, weil die beiden norddeutschen Flächenländer jedes Jahr weit mehr Strom aus Wind- und Sonnenenergie erzeugen, als sie selbst verbrauchen können. Zudem gebe es schon allein in Schleswig-Holstein Anfragen für ein Gigawatt H2-Leistung, berichtete Henning Mümmler-Grunow, Leiter der Abteilung für Klimaschutz und Energiewende im Energieministerium des nördlichsten Bundeslandes. Schleswig-Holstein möchte bis 2040 klimaneutral werden.

---------- Werbung ----------

Den Weg zur Defossilisierung in der Industrie, aber auch im Verkehrs- und Wärmebereich, aufzuzeigen, ist Ziel des NRL, das mit einem Investitionsvolumen von über 405 Mio. Euro das mit Abstand größte Reallabor in Deutschland ist. Mit ihrem systemischen Ansatz entlang der gesamten Energie-Wertschöpfungskette können die Demonstrationsvorhaben als Blaupause für andere Regionen dienen, erklärte Professor Hans Schäfers, Mitglied der NRL-Projektsteuerungsgruppe. Zudem stimulieren sie „wirtschaftliche Impulse für die Entwicklung von Zukunftsmärkten und stärken zugleich auch die Wettbewerbsfähigkeit der ansässigen Unternehmen durch den Einsatz klimafreundlicher Technologien“ sagte Reinhard Meyer, Wirtschaftsminister in Mecklenburg-Vorpommern.

---------- Werbung ----------
preloader