Eine Revolution aus Deutschland

Eine Revolution aus Deutschland

HAZOP-Analyse mit KI-Unterstützung

Im Jahr 1999 entwickelte Christian Machens das weltweit erste Brennstoffzellenboot, die Hydra, und legte damit den Grundstein für Innovationen, die weit in die Zukunft reichen. Nun, 25 Jahre später, setzt er erneut Maßstäbe in der Techniklandschaft – diesmal mit einer Weltneuheit, die das Potenzial hat, die Sicherheitsanalysen von Anlagen grundlegend zu verändern.

In der modernen Technik ist die Durchführung einer HAZOP-Analyse (Hazard and Operability) bei Systemen mit hohem Gefährdungspotenzial unverzichtbar. Diese Analyse wird von einem Team erfahrener Ingenieure unter der Leitung eines sogenannten „HAZOP Chairs“ durchgeführt, um mögliche Gefahren in Systemen wie Brennstoffzellen- oder Elektrolyseanlagen zu identifizieren und geeignete Gegenmaßnahmen zu entwickeln. In Deutschland spricht man hierbei auch von PAAG, was den Prozess des Erkennens von Gefahren, der Abschätzung ihrer Auswirkungen und der Festlegung von Gegenmaßnahmen präzise beschreibt.

---------- Werbung ----------

Traditionell erfordert die Rolle des HAZOP-Chairs nicht nur technisches Know-how, sondern auch ausgeprägte soziale Kompetenzen. Die Kunst besteht darin, durch Vorstellungskraft und Erfahrung alle kritischen Szenarien aus den Diskussionen zu extrahieren und in einer strukturierten Form zu dokumentieren. Dabei wird nicht nur die Gefährlichkeit der Szenarien, sondern auch ihre Eintrittswahrscheinlichkeit bewertet, um schließlich ein Ranking der Risiken und Anforderungen an die Zuverlässigkeit der Gegenmaßnahmen zu erstellen.

Aber wie sicher ist es, sicherheitsrelevante Entscheidungen einer KI (künstlichen Intelligenz) zu überlassen? „Es geht nicht darum, die Sicherheitsverantwortung an eine Maschine abzugeben, sondern darum, sich wiederholende Aufgaben zu vereinfachen“, betont Machens.

---------- Werbung ----------

„Ich möchte mein Fachwissen im Bereich Explosionsschutz und Wasserstoff, das ich in den letzten Jahrzehnten gesammelt habe, an eine künstliche Intelligenz weitergeben. KI wird heute bereits in vielen Bereichen eingesetzt, doch als Unterstützung für HAZOP-Analysen wurde sie bisher nicht genutzt.“

                                                                                                                                                                                                                                                                                                                                          Christian Machens

Vorgehensweise
In einem typischen HAZOP-Meeting diskutieren bis zu acht Ingenieure über mehrere Tage hinweg verschiedene Aspekte eines Systems, von Gas- und Kühlwasserkreisläufen bis hin zur Ausfallsicherheit der Stromversorgung und spezifischen Gefahren für Menschen in der Nähe der Anlage. Diese Besprechungen sind nicht nur zeit- und kostenintensiv, sondern auch anstrengend für die Beteiligten. Zudem beeinflusst die Erfahrung der Teilnehmer maßgeblich das Ergebnis.

Normalerweise wird eine HAZOP durchgeführt, wenn das R&I-Schema, Rohrleitungs- und Instrumentenfließschema (engl.: P&ID), einer Anlage fertiggestellt ist. An dieser Stelle kommt die neue, intelligente Software ins Spiel. Sie analysiert die vorhandenen Informationen, erkennt Schwachstellen in der Anlage und schlägt automatisch Maßnahmen zu deren Beseitigung vor.

Die eigentliche Weltneuheit besteht darin, dass die KI das P&ID, das in der Regel als DXF- oder DWG-Datei vorliegt, erkennt und analysiert, um anschließend die dazugehörige HAZOP-Tabelle automatisch auszufüllen. Dieser Prozess spart den Beteiligten viele Arbeitsstunden und erleichtert die Arbeit erheblich.

„Es ist wichtig zu verstehen, dass die KI den Menschen nicht ersetzt. Die Verantwortung für die Sicherheit der Anlage bleibt immer beim Menschen. Aber das System kann die Schreibarbeit erheblich vereinfachen, den Prozess beschleunigen und Kosten sparen“, so Machens. Darüber hinaus verfügt das KI-System über Kenntnisse wesentlicher gesetzlicher Grundlagen, wie EN- und ISO-Normen sowie DGUV- und TRGS-Vorschriften. Dies ermöglicht es, „just in time“ regelkonforme Lösungsvorschläge während der HAZOP zu bieten.

Für die Umsetzung dieser bahnbrechenden Idee erhielt Machens eine Förderung der Sächsischen Aufbaubank (SAB), was das wirtschaftliche Potenzial dieser Entwicklung unterstreicht. Die Entwicklung des KI-Systems erfolgt in Zusammenarbeit mit der MOVE Technology GmbH, einem erfahrenen Unternehmen auf dem Gebiet der KI-Entwicklung.

„Derzeit trainiere ich mehrere KI-Modelle, damit sie die einzelnen Bauteile im P&ID fehlerfrei erkennen und deren Zusammenspiel verstehen können. Der nächste Schritt ist die Durchführung einer vollständigen HAZOP-Analyse“, erklärt Machens.

Präsentiert bei den 18. Explosionsschutztagen
Die Ergebnisse dieser Entwicklung wurden am 24. September 2024 im Rahmen der 18. Explosionsschutztage im Haus der Technik in Essen vorgestellt. Das KI-System „HAZOP-KI“ wird danach in einem großen Ingenieurbüro, das Abgasbehandlungs- und Wasserstoffsysteme plant, weiter getestet und optimiert. Schon bald wird das System anderen interessierten Nutzern als Monatslizenz zur Verfügung stehen.

„Natürlich stellt sich auch die Frage der Datensicherheit“, betont Machens. „Die KI wird direkt auf den Servern der jeweiligen Nutzer installiert und betrieben. Dadurch bleiben sensible Daten stets in den Händen des Anwenders.“

Zusammengefasst ist diese Entwicklung ein wertvolles Werkzeug für Ingenieurbüros, Zertifizierungsstellen, Versicherungen und Betreiber sicherheitskritischer Anlagen. Eine KI kann den Menschen nicht ersetzen. Sie bietet aber eine hervorragende Unterstützung bei der Durchführung von HAZOP-Analysen und kann auch weniger erfahrenen Ingenieuren eine wichtige Hilfe sein.

Elektrochemische Wasserstoffseparation

Elektrochemische Wasserstoffseparation

Patentiertes Verfahren als kostengünstige Alternative zur Elektrolyse

Der Erfolgskurs von Siqens begann mit speziellen Methanol-Brennstoffzellen. Dann kam die „Elektrochemische Wasserstoffseparation“ (EHS) hinzu, die auf den selbst entwickelten HT-PEM-BZ-Stacks beruht. Mit ihrer Hilfe lässt sich Wasserstoff aus Erdgas oder Abgasen aus Industrie und Müllverbrennung hochrein abtrennen. Der Hersteller sieht die EHS im Verbund mit den eigenen Brennstoffzellen auch als Lösung für das sogenannte Letzte-Meile-Problem.

Ob im südamerikanischen Dschungel oder auf 3.000 Metern Höhe in den Schweizer Bergen, in einer Forschungsstation in der Antarktis oder an einem Grenzposten im nördlichen Skandinavien – überall dort seien HT-PEM-Brennstoffzellen von Siqens im Einsatz, die Strom für Funk- und Messstationen oder Kameras liefern, wie Thomas Klaue, Geschäftsführer des 2012 in München als Start-up gegründeten Unternehmens, erklärt.

---------- Werbung ----------

Es gibt die speziellen Methanol-Brennstoffzellen aber auch an eher unexotischen Orten: So dienen sie an deutschen Autobahnbaustellen zur Beleuchtung oder in Windparks zur Hindernisbefeuerung. Die „Ecoport“ genannten BZ-Systeme bestehen aus Brennstoffzellenstacks mit einer Hochtemperatur-Polymer-Elektrolyt-Membran (HT-PEM) und einem Reformer. „Im Reformer wird aus Methanol reiner Wasserstoff gewonnen“, so der Ingenieur und promovierte BWLer Klaue. „Dieser Wasserstoff geht dann durch die HT-PEM-Brennstoffzelle. Unser System arbeitet allerdings mit industriellem Methanol, zu einem Bruchteil der Kosten, verglichen mit hochreinem Methanol.“

Damit unterscheiden sich diese Systeme deutlich von Direkt-Methanol-Brennstoffzellen (DMBZ), bei denen ein flüssiges Methanol-Wasser-Gemisch durch die BZ geleitet wird. Dabei müsse das Methanol so rein sein wie für medizinische Zwecke, was entsprechend teuer sei, erklärt Klaue, der seit Ende 2019 als CEO von Siqens fungiert. Wirkungsgrad und Leistungsbereich von DMBZ seien vergleichsweise gering, und niedrige Temperaturen vertrügen sie nicht gut. Andere Indirekt-Methanol-Brennstoffzellen mit PEM und Reformer gebe es zwar sowohl im Niedrig- als auch im Hochtemperatur-Bereich, doch die würden jeweils herstellerspezifische Methanol-Wasser-Gemische mit geringerer Energiedichte erfordern, so Klaue. Mit einem Verbrauch von 0,6 Liter Kraftstoff pro Kilowattstunde Strom sei Siqens Marktführer in Sachen Effizienz. Die Ecoports, laut Klaue „unser Brot- und Butter-Geschäft“, haben eine elektrische Leistung von 800 oder 1.500 Watt in der Spitze (Dauerbetrieb: 500 beziehungsweise 1.000 Watt).

---------- Werbung ----------

BZ als Ersatz für Dieselgeneratoren
Das seit langem in der Industrie verwendete Methanol kann ebenso wie andere flüssige Kraftstoffe kostengünstig transportiert und gelagert werden. Von daher eignen sich (Methanol-)Brennstoffzellen insbesondere für Gebiete ohne Anschluss an ein Elektrizitätsnetz und dort, wo eine unterbrechungsfreie Stromversorgung gewährleistet sein muss, etwa in der Notstromversorgung für kritische Infrastruktur. Bislang übernehmen meist Dieselgeneratoren diese Funktion, doch die werden künftig nach und nach durch Brennstoffzellen ersetzt werden, und das nicht nur wegen ihres erheblich geringeren CO2-Ausstoßes: Sie arbeiten auch leiser und sind frei von Feinstaub und Stickoxiden.


Ecoport 800

Die Nachfrage nach den patentierten Systemen, mit denen die süddeutsche Firma seit 2019 am Markt ist, steigt. So interessieren sich etwa Behörden, Betriebe oder Betreiber von Telekommunikationsanlagen für die Methanol-Brennstoffzellen von Siqens, die laut Klaue robust und zuverlässig und auch fernab der Zivilisation einsetzbar sind. Das gelte für alle Klimazonen, von minus 20 bis plus 50 Grad Celsius. Obendrein seien die Betriebskosten im Vergleich zu denen von Dieselgeneratoren um rund 75 Prozent geringer. In diesem Jahr rechnet das Münchner Unternehmen, das rund 30 Mitarbeiter beschäftigt, deshalb auch mit dem Verkauf von mehreren Hundert seiner HT-PEM-Brennstoffzellensysteme.

Dass die Notwendigkeit des Einsatzes von Wasserstoff- und Brennstoffzellen-Technologien aus Gründen des Klimaschutzes steigt, steht heute außer Frage. Der Siqens-CEO betont jedoch: „Wir sind davon überzeugt, dass die Wasserstoffwirtschaft nur mit preislich wettbewerbsfähigen Lösungen ein Erfolg wird, insbesondere, was die Verteilung auf der Letzten Meile angeht.“

Methanol als Wasserstoffträger
Außer Brennstoffzellen bietet das Unternehmen seit 2022 eine sehr spezielle technische Lösung zur Herstellung von reinem Wasserstoff an: die Elektrochemische Wasserstoffseparation (EHS). Bei diesem patentierten Verfahren strömt das Feedgas durch einen HT-PEM-Stack, der auch im Ecoport genutzt wird, erklärt Klaue. „Der Stack mit den MEAs ist vergleichbar mit einem Sieb, das unter Spannung nur für die anodenseitig zu Protonen reduzierten Wasserstoffmoleküle durchlässig ist. Auf der Kathodenseite erhalten die Protonen die Elektronen zurück. Das Produkt ist hochreiner Wasserstoff.“ Mit dieser Methode kann Wasserstoff aus ganz unterschiedlichen Medien abgetrennt, gereinigt und aufbereitet werden. Das kann Erdgas sein oder Abgas, das in industriellen Prozessen oder bei der Müllverbrennung entsteht. Der Wasserstoff kann aber auch aus natürlichen Reservoiren wie Gaslagerstätten gewonnen werden.

Und weil Methanol ein guter Wasserstoffträger ist, lässt sich mit dem EHS-System auch das Problem der Letzten Meile umgehen: Aus dem über das Erdgasnetz transportierten Methanol wird Wasserstoff direkt vor Ort beim Verbraucher CO2-frei erzeugt. „In 10 Litern Methanol ist ungefähr ein Kilogramm Wasserstoff chemisch gebunden“, rechnet Thomas Klaue vor. Das sei mehr als in einer üblichen 70-Kilogramm-Druckgasflasche, die 50 Liter auf 200 bar komprimierten Wasserstoff enthält. Die Ausbeute betrage hier lediglich 0,8 Kilogramm. Statt also Wasserstoff wie bisher in Bündeln von schweren Stahlflaschen oder in Drucktanks per Trailer zu transportieren, könne man durch den Einsatz von Methanol-Brennstoffzellen viel Geld sparen.

Transport- und Speicherkosten machen derzeit noch den größten Anteil am Wasserstoffpreis aus. „Das gilt umso mehr, wenn der Einsatzort nur per Hubschrauber erreichbar ist“, ergänzt Klaue. „Das Verhältnis von Transportgewicht zu H2-Nutzgewicht ist beim Methanol zehn zu eins gegenüber hundert zu eins bei Druckgasflaschen.“

1 kg Wasserstoff für weniger als zwei Euro
Bei der EHS wird wie bei der Wasserelektrolyse Strom eingesetzt. Der Energiebedarf sei jedoch erheblich geringer: Pro Kilogramm Wasserstoff würden nur drei bis fünf Kilowattstunden Strom gebraucht; also etwa zehn Prozent des Stroms, der für die Elektrolyse benötigt wird. „Dabei entsteht Wasserstoff in Brennstoffzellenqualität zu einem Preis von weniger als zwei Euro pro Kilogramm.“ Die Technologie sei flexibel, skalierbar und könne an ein breites Spektrum von Gasen angepasst werden. So eine Anlage, die je nach Kapazität nur eine Fläche von ein bis zwei Quadratmetern einnimmt, lässt sich direkt ans Gasnetz anschließen.

Durch das EHS-Verfahren könnten mit drei Stacks gut 100 Kilogramm Wasserstoff pro Tag erzeugt werden, was für eine H2-Tankstelle ausreiche, so Thomas Klaue. Die modulare Bauweise erlaube auch mehrere Tonnen pro Tag, mit denen der Bedarf eines Industriebetriebs gedeckt werden könne. „Die elektrochemische Wasserstoffabtrennung ist in jedem Fall eine attraktive Alternative zu anderen H2-Technologien, da sie vergleichsweise wenig Energie verbraucht und eine hohe Selektivität für Wasserstoff aufweist“, so der CEO.

Nach einem ersten Pilotprojekt in Australien gibt es nun ein zweites in Deutschland: Im unterfränkischen Haßfurt wird Wasserstoff mittels EHS aus dem Erdgasnetz gewonnen. Die Stadtwerke der Kreisstadt sind als Pioniere bekannt, weil sie schon seit den 1990er-Jahren auf erneuerbare Energien setzen: Photovoltaik, Windkraft und Biogas von Landwirten aus der Region. Seit 2016 haben sie einen Elektrolyseur, um aus überschüssigem Windstrom Wasserstoff zu erzeugen.

Nun erschließen sie mithilfe der EHS-Technologie von Siqens das kommunale Gasnetz als Wasserstoffquelle. Das geschieht in Kooperation mit dem Helmholtz-Institut Erlangen-Nürnberg und dem Institut für Energietechnik an der Ostbayerischen Technischen Hochschule Amberg-Weiden. Der aus dem Erdgas separierte Wasserstoff wird komprimiert und gespeichert und bei Bedarf über eine Brennstoffzelle in Strom umgewandelt.

Da viele Gasnetzbetreiber in Zukunft ihrem Erdgas grünen Wasserstoff beimischen wollen, könnten solche Lösungen zur Abtrennung und Aufbereitung des klimaneutralen Gases bald an Bedeutung gewinnen. „Durch die Trennung der Gase mittels EHS am Ort des Verbrauchs kann der Endkunde direkt mit hochreinem ‚grünen‘ Wasserstoff versorgt werden“, sagt Thomas Klaue. Also Wasserstoff in einer Qualität, wie sie für industrielle Prozesse oder Brennstoffzellen-Fahrzeuge benötigt werde. Aus diesem Grund plädiert Klaue auch vehement für die Erhaltung der Gasnetze.

Im Februar dieses Jahres appellierte er öffentlich an das Bundeswirtschaftsministerium, die Rückbaupläne nochmals zu überdenken; allein schon aus Kostengründen. „Außerdem wird das geplante H2-Kernnetz lange nicht in der Lage sein, das gesamte Land ohne großen Aufwand mit grüner Energie zu versorgen.“ Weil jedoch das bundesweite Gasnetz größtenteils wasserstofftauglich sei, solle die Infrastruktur für den künftigen Transport von grünem Wasserstoff genutzt werden, um Industrie und Gemeinden mit klimafreundlicher Energie zu versorgen.

Hochleistungs-Mikrofräsen hochharter Stähle für Bipolarplatten

Hochleistungs-Mikrofräsen hochharter Stähle für Bipolarplatten

Einblicke in eine sich rasant entwickelnde Technologie

Werkzeuge für das Stanzen, Prägen und Umformen von Blechmaterialien sind sehr anspruchsvoll. Bei der Herstellung sind teils Genauigkeiten im Bereich von 1 bis 2 µm gefordert. Der Schwierigkeitsgrad nimmt stark zu, je größer das Werkzeug und je dünner die Bleche werden. Ein Paradebeispiel hierfür sind Prägeplatten für die Blechteile von Bipolarplatten für Brennstoffzellen. Hierbei handelt es sich um dünne Strukturen aus verschweißten Blech-Halbschalen, die filigrane Strömungskanäle umschließen. Zusammen mit den dazwischen im Sandwichverfahren angeordneten Membran-Elektroden-Einheiten ergeben zahlreiche Lagen hintereinander die eigentlichen Stacks.

Bipolarplatten für Brennstoffzellen, die im Kfz-Bereich eingesetzt werden, bestehen häufig aus geprägten, gestanzten und zu Hohlkörpern verschweißten Blech-Halbschalen. Die Herstellung geeigneter Präge- und Stanzwerkzeuge ist beim aktuellen Stand der Technik eine Engpass-Technologie. Dünnere Bleche würden zwar das Gewicht der Brennstoffzellen reduzieren. Je dünner jedoch das Material, desto enger muss auch der Schnittspalt und umso genauer die Geometrie werden. Die von den Präge- und Stanzwerkzeugen sowie von den Pressen zu erbringenden Genauigkeiten sind daher äußerst herausfordernd.

---------- Werbung ----------

Im Mittelpunkt des Interesses steht die Entwicklung einer geeigneten Prozesskette für die Herstellung der Präge- und Stanzwerkzeuge für die Produktion der Blechteile. Wesentliche Punkte betreffen die Anforderungen an den Stahl für die Werkzeuge, die CAD/CAM-Software, die benötigten Mikrofräswerkzeuge, die Eigenschaften der Werkzeugmaschine, die Schmierung und Kühlung der Fräser sowie die messtechnische Kontrolle und Dokumentation der Qualität.

In diesem Bereich arbeiten beispielsweise die Unternehmen Hufschmied, MHT, Röders, Open Mind, Voestalpine und Zeiss, die gemeinsam den aktuellen Entwicklungsstand im Rahmen eines Seminars mit mehr als 50 Teilnehmern präsentierten. Die dort vorgetragenen Ergebnisse sind nicht nur für Bipolarplatten-Akteure interessant, sondern darüber hinaus auch für weitere Branchen wie die Mikroproduktion, die Feinmechanik, die Medizintechnik oder die Luft- und Raumfahrt.

---------- Werbung ----------

Ultraharter Stahl: Böhler K888 Matrix
Um die äußerst feinen Strukturen von Bipolarplatten wirtschaftlich darstellen zu können, muss das Prägewerkzeug eine sehr hohe Maßhaltigkeit, gute Verschleißbeständigkeit sowie eine geringe Adhäsionsneigung aufweisen. Weitere Voraussetzung ist eine gute Zerspanbarkeit. Dies setzt einen niedrigen Anteil an Primärcarbiden in einer harten Gefügematrix (Matrixstahl) voraus. Des Weiteren sollten die Carbide nur sehr klein sowie homogen über den gesamten Querschnitt verteilt sein, da grobe Exemplare beim Zerspanen zerbrechen und dadurch Oberflächenfehler verursachen können. Deshalb kommen pulvermetallurgisch erzeugte Stähle zum Einsatz.

Gewählt wurde mit dem Böhler K888 Matrix ein Werkstoff mit einem maximalen Carbidanteil von weniger als zwei Prozent. Dieser wird im weichgeglühten Zustand mit einer Brinellhärte von unter 280 HB ausgeliefert und erreicht nach dem Härten bei Temperaturen zwischen 1.070 und 1.120 °C eine Rockwellhärte von 63 +1 HRC. Dadurch zeichnet er sich selbst im Vergleich mit hoch carbidhaltigen Werkstoffen durch eine hohe Verschleißbeständigkeit aus.

Zerspanungsversuche bei der Firma Hufschmied ergaben, dass das Material dennoch gut bearbeitbar ist und sehr gute Oberflächenqualitäten erreichbar sind. Der Werkstoff ist zudem gut beschichtbar, was ebenfalls zu einer Standzeiterhöhung führt.

CAD/CAM-Software
Für eine optimale Bauteilqualität ist ein geeignetes NC-Programm unentbehrlich. Zur Erstellung dieser NC-Programme bietet Open Mind mit seinem CAD/CAM-System hyperMILL alle Voraussetzungen. Die Software berechnet dazu die Werkzeugwege mit höchster Genauigkeit und liefert dadurch entsprechend exakte NC-Daten. Hierfür müssen jedoch einige Punkte beachtet werden: Um für die Berechnung der Werkzeugwege die Topologie des Bauteils vollständig zu berücksichtigen, müssen geometrische Merkmale wie scharfe Kanten, Lücken sowie die Beschaffenheit der Flächenübergänge analysiert und erkannt werden. Diese Informationen fließen anschließend in die Berechnungen ein und steuern etwa die Punkteverteilung im Werkzeugweg.

Zusätzlich lassen sich weitere Optimierungen wie das Anpassen des Vorschubs durchführen. Dadurch kann das Fräswerkzeug das Bauteil mit konstantem Vorschub bearbeiten. Die Funktion „Sanftes Überlappen“ vermeidet sichtbare Übergänge durch den Einsatz verschiedener Fräswerkzeuge oder Strategien und reduziert den Aufwand für manuelle Nachbearbeitungen auf nahezu null.

Wichtig ist auch die Verknüpfung geometrisch identischer Strukturen innerhalb eines Bauteils, die entweder automatisch oder manuell erkannt bzw. definiert werden. Die entsprechenden Werkzeugwege, die zuerst für einen einzelnen Bereich erstellt wurden, können dann über eine Transformation an die vorher erkannten oder manuell definierten Positionen gebracht und vollautomatisch verbunden werden. Dabei werden unnötige Bewegungen entfernt. Durch dieses Vorgehen lassen sich im CAM-System die Berechnungszeiten erheblich reduzieren.

Anforderungen an die Fräsmaschine
Die Bearbeitung von Prägestempeln für Bipolarplatten ist durch hohe Materialhärte, kleine Werkzeuge mit Durchmessern deutlich unter einem Millimeter sowie hohe Anforderungen an Oberflächengüte und Genauigkeit bis herab in den 1-µm-Bereich charakterisiert. Die kleinteiligen Konturen bedingen zudem lange Laufzeiten, was sehr gute thermische Langzeitstabilität der Werkzeugmaschine voraussetzt.

Röders-Werkzeugmaschinen zeichnen sich unter anderem durch reibungsfreie Direktantriebe, hochsteife Rollenführungen, einen reibungsfreien Gewichtsausgleich der Z-Achse, Präzisions-HSC-Spindeln und eine hochgenaue Werkzeugvermessung aus. Eine Besonderheit ist die mit 32 kHz hohe Taktrate der Regelung in allen Regelkreisen, die eine schnelle Korrektur selbst kleinster Abweichungen ermöglicht. Entscheidend ist außerdem das ausgefeilte Temperaturmanagement durch ein auf ± 0,1 K stabil gehaltenes Temperiermedium, das durch alle wesentlichen Komponenten der Maschine zirkuliert. So lassen sich Toleranzen im unteren Mikrometerbereich prozesssicher einhalten.

 


Die zur Bearbeitung der verschiedenen Segmente des Demonstrators (50 mm x 40 mm) auf der Röders-Anlage eingesetzten Hufschmied-Werkzeuge der Bumble-Bi-Reihe sowie die entsprechenden Bearbeitungszeiten, Quelle: Röders/Hufschmied

Bumble-Bi-Mikrowerkzeuge von Hufschmied
Für die Fräswerkzeuge ist die Bearbeitung von Prägewerkzeugen für Bipolarplatten eine besondere Herausforderung. Dies liegt an der Härte des zu bearbeitenden Materials und der langen Laufzeit der Programme von teils deutlich über hundert Stunden. Auch erlauben die geforderten Genauigkeiten nur geringen Verschleiß. Hierfür entwickelte Hufschmied die spezielle „Bumble-Bi“-Baureihe von Mikrowerkzeugen. Dazu gehören Hochvorschubfräser für das Schruppen sowie Torusfräser, Kugelfräser und Flatballfräser. Letztere sind eine Art Hybrid aus Torus- und Kugelfräser. Alle Werkzeuge erhalten eine eigens entwickelte PVD-Beschichtung, deren extrem glatte Schichten ein gutes Temperaturmanagement ermöglichen. Die zur Herstellung des Demonstrators eingesetzten Fräswerkzeuge sowie ihre Einsatzparameter sind in einer Tabelle zusammengefasst.


Die hohle Hülse des MHT-Medienverteilers umschließt den Werkzeughalter, ohne ihn zu berühren oder mit ihm zu rotieren. Luft und Schmiermedium werden über die Andockstation unterhalb der Spindel zugeführt.

Optimal schmieren mit dem MHT-Medienverteiler
Bei Zerspanungsprozessen spielt die richtige Kombination von Kühlung, Schmierung und Entfernung von Spänen aus dem Arbeitsbereich eine entscheidende Rolle. Der MHT-Medienverteiler ermöglicht eine effiziente und zudem kosten- und energiesparende Herangehensweise. Kernelement ist eine konische Hülse, die dem Werkzeughalter fest zugeordnet und mit diesem beim Werkzeugwechsel getauscht wird, jedoch nicht mit dem Fräser mitrotiert. Sie wird unterhalb der Spindel angedockt und von dort mit Druckluft und Schmiermedium versorgt.

Die wesentliche Kühl- und Reinigungsarbeit übernimmt hierbei die Druckluft, die aus ringförmig angeordneten Düsen am unteren Rand der Hülse strömt. Durch den starken Luftstrahl werden die Späne samt ihrem Wärmeinhalt sofort vom Fräser und vom Werkstück entfernt. Das Schmiermedium aus sorgfältig ausgewählten Kohlenwasserstoffen wird in äußerst geringen Mengen (2 bis 10 ml/Stunde) zugeführt. Dies genügt, um die Schneiden optimal zu schmieren. Bei der Hartzerspanung verringert sich die Wärmeentwicklung an den Schneiden um etwa 50 Prozent. Entscheidende Vorteile sind deutlich erhöhte Lebensdauern der Werkzeuge, eine höhere Zerspanungsleistung der Maschine sowie bessere Oberflächen der Werkstücke.

Messtechnik und Qualitätskontrolle
Bei der Herstellung von Bipolarplatten-Prägewerkzeugen kommen Fräser mit Durchmessern bis herab zu 0,2 mm zum Einsatz. Für die Qualitätskontrolle müssen sehr kleine und zugleich enge Konturbereiche, zum Beispiel an den Flanken der Fließkanäle sowie an den geschnittenen Kanten, gemessen werden. Da es hierbei bis herab zum einzelnen µm geht, sollte die Messunsicherheit des verwendeten Messsystems zehnmal besser sein als die zu prüfenden Fertigungstoleranzen. Das schaffen jedoch nur wenige Koordinatenmessgeräte.

Um diese Messpunkte fähig und mit vertretbarem Aufwand erfassen zu können, kam daher ein optischer Sensor vom Typ Zeiss DotScan mit einer Messrate von bis zu 1.000 Messpunkte/s zum Einsatz, der mit einer Dreh-Schwenkeinheit in drei verschiedenen Winkelstellungen über die Probe geführt wurde.


Messung des Demonstrators mithilfe des optischen Sensors Typ Zeiss DotScan mit MPE von 1,8 µm + L/350. Um die Flanken besser messen zu können, wurde er mit einer Dreh-Schwenkeinheit des Typs RDS und auf einem Zeiss-„Contura“-Koordinatenmessgerät über die Probe geführt. Quelle: Zeiss

Ergebnisse
Die vorgestellten Ergebnisse (Streuung ±3µm) belegen die Effizienz der hier vorgestellten Prozesskette. Mit der richtigen Auswahl der eingesetzten Komponenten und passender Vorgehensweise lässt sich eine hohe Prozesssicherheit auch bei hochfesten bzw. harten Werkzeugstählen erreichen. Zudem können hierbei hohe Qualitätsanforderungen erfüllt werden. Aber dazu sind auch alle Aspekte eingehend zu betrachten.

Autor: Klaus Vollrath

Wasserstoffhochlauf in Deutschland

Wasserstoffhochlauf in Deutschland

Baufortschritte sind sichtbar
„Aus Vergangenheit wird Zukunft“, sagte Bundeswirtschaftsminister Robert Habeck, als er sich im August dieses Jahres in Hamburg über den Stand der Bauarbeiten für zwei IPCEI-geförderte Großprojekte informierte. In Begleitung der Hamburger Senatorin für Wirtschaft Melanie Leonhard sowie des Senators für Umwelt Jens Kerstan setzte Habeck gemeinsam mit Gabriele Eggers, kaufmännische Geschäftsführerin von Gasnetz Hamburg, symbolisch den großen Schraubenschlüssel an, während zugleich röhrende Bagger ein Gebäude auf dem Gelände des 2021 stillgelegten Kohlekraftwerks Moorburg abrissen.

Denn direkt an der Süderelbe wird nun Platz geschaffen für den sogenannten Hamburg Green Hydrogen Hub (HGHH), wo mit dem seit langem geplanten 100-Megawatt-Elektrolyseur eine der größten Wasserstofffabriken Deutschlands entsteht. Baubeginn ist 2025, sagte Christian Heine, Sprecher der Geschäftsführung der Hamburger Energiewerke, die den HGHH gemeinsam mit ihrem Konsortialpartner Luxcara realisieren. Parallel dazu hat Hamburg Gasnetz die Tunnelbohrer für das H2-Industrienetz (HH-WIN) im Einsatz, das im Hafen der Hansestadt mit einer Länge von anfangs 40 Kilometern angelegt wird. Später soll es auf 60 Kilometer ausgebaut und an den European Hydrogen Backbone angebunden werden.

Hamburg will Tor zur Wasserstoffwelt werden
Beide Projekte sollen 2027 in Betrieb gehen und zusammen das Fundament für den Aufbau einer H2-Infrastruktur in Norddeutschland bilden. 10.000 Tonnen grünen Wasserstoff pro Jahr soll der Elektrolyseur dann mithilfe des reichlich vorhandenen Windstroms produzieren. Dieser kann direkt bis zum 380-kV-Netzknoten übertragen werden, der am Standort Moorburg bereits vorhanden ist.

---------- Werbung ----------

„Luxcara ist in einige europäische Wasserstoffprojekte eingebunden“, sagte deren Geschäftsführerin Alexandra von Bernstorff anlässlich des Ministerbesuchs. „Aber keines begeistert mich so wie dieses hier.“ Denn hier gehe es wirklich voran. Während andere noch redeten und planten, werde in der Hansestadt gebaut, sagte auch Umweltsenator Kerstan. Seit vergangenem Jahr ist der Rückbau des Kohlekraftwerks in vollem Gange, an dessen Standort neben dem Elektrolyseur auch eine Gasübergabestation und eine Lkw-Verladestation entstehen. Von dort kann Wasserstoff per Trailer abtransportiert werden, um kleinere und mittlere Unternehmen im Hamburger Hafen zu versorgen, die nicht an das Gasnetz angeschlossen sind. Der Elektrolyseur soll dazu beitragen, den Hafen samt seiner Schwer- und Chemieindustrie zu defossilisieren, und perspektivisch auf bis zu 800 MW-Elektrolyseleistung ausgebaut werden, woran seitens der Industrie großes Interesse bestehe.

4,6 Mrd. Euro von Bund und Ländern
HGHH und HH-WIN sind zwei der 23 großen IPCEI-Vorhaben in Deutschland, die mit insgesamt 4,6 Mrd. Euro an öffentlichen Geldern unterstützt werden. Weitere 3,3 Mrd. Euro sollen durch private Investitionen der beteiligten Unternehmen hinzukommen. Das Geld geht unter anderem in den Aufbau von 1,4 Gigawatt Elektrolyseleistung, rund 2.000 Kilometer Wasserstoffpipelines, 370 Gigawattstunden Speicherkapazität und in die Nutzung von flüssigen organischen H2-Trägern (LOHC). Entsprechende Terminals sollen auf diese Weise den Transport von etwa 1.800 Tonnen Wasserstoff pro Jahr ermöglichen.

---------- Werbung ----------

Bundeswirtschaftsminister Habeck hatte am 15. Juli gemeinsam mit den Wirtschaftsministern von zehn Bundesländern in Berlin die Förderzusagen überreicht (s. HZwei-Heft Juli 2024). Die staatliche Unterstützung, die zu 70 Prozent vom Bund und zu 30 Prozent von den Ländern kommt, ist für Projekte der sogenannten Hy2Infra-Welle des Wasserstoff-IPCEI bestimmt. Die beihilferechtliche Genehmigung für die öffentliche Förderung hatte die EU-Kommission am 15. Februar erteilt.

Trotz des Baufortschritts in Moorburg bleibt für Industrievertreter die Unklarheit über den künftigen Wasserstoffpreis. Der muss noch verhandelt werden. Die Gespräche zwischen dem HGHH-Konsortium und den im Hafen ansässigen Unternehmen laufen bereits.

Abb.: Symbolische Montage am Standort Hamburg-Moorburg: Vizekanzler Robert Habeck und Gabriele Eggers, kaufmännische Geschäftsführerin von Gasnetz Hamburg, greifen zum Schraubenschlüssel. Dahinter Christian Heine (Hamburger Energiewerke), Michael Dammann (Gasnetz Hamburg) und Umweltsenator Jens Kerstan.

hy-fcell 2024 – Abbildung der Wertschöpfungskette

hy-fcell 2024 – Abbildung der Wertschöpfungskette

Gibt es eine Schnittmenge zwischen Quantentechnologie und Wasserstoff- und Brennstoffzellentechnik? Diese Frage dürfen sich alle Besucherinnen und Besucher der diesjährigen hy-fcell stellen, da zeitgleich mit der International Hydrogen and Fuel Cell Expo and Conference auch die Quantum Effects, die Fachmesse und Konferenz für Quantentechnologien (s. Foto), stattfindet. Für die Messegesellschaft werden auf beiden Veranstaltungen Zukunftstechnologien thematisiert, die mit ihrer Innovationskraft grundlegende Weiterentwicklungen hervorbringen können. Ob es auch für das Fachpublikum Schnittstellen gibt (z. B. bei Quantensensorik), wird sich zeigen. Parallel finden zudem noch Messen für Instandhaltung, Klebtechnologie, Produktions- und Montageautomatisierung sowie Bildverarbeitung statt.

Für den Verband Deutscher Maschinen- und Anlagenbau (VDMA), der unterstützend an der hy-fcell mitwirkt, liegt die Besonderheit dieses süddeutschen Branchentreffens in der Darstellung der Wertschöpfungskette der Brennstoffzellentechnologie. Gerd Krieger, Geschäftsführer der VDMA-Arbeitsgemeinschaft Brennstoffzellen, erklärte gegenüber HZwei, die hy-fcell sei „die Messe, um das Thema Industrialisierung der Produktion nach vorne zu bringen“, da den VDMA „die Handhabung der Brennstoffzellentechnik“ vorantreibe.

Auf der Wasserstoffseite ist in diesem Jahr das Angebot der Investmentkapitalgesellschaft Senco Hydrogen Capital erwähnenswert, die bei der Beschaffung von Wachstumskapital für den H2-Mittelstand behilflich ist. In Stuttgart will der Dienstleister zeigen, welche Technologien zukünftig im Fokus stehen könnten und welchen Mehrwert Kapitalpartnerschaften bieten können, wenn mittelständische Unternehmen zusätzliches Kapital, beispielsweise zum Aufbau neuer Fertigungsstraßen, benötigen.

---------- Werbung ----------

Autor: Sven Geitmann

preloader