HySupply – Deutsch-australische Wasserstoffbrücke

HySupply – Deutsch-australische Wasserstoffbrücke

acatech und BDI zeigen, was machbar ist

Das Energiesystem zu defossilisieren ist ein wichtiges Ziel der Energiewende – grünen Wasserstoff zu importieren eine mögliche Option dafür. Das Kooperationsprojekt HySupply von acatech und dem Bundesverband der deutschen Industrie (BDI) hat deshalb die Machbarkeit einer deutsch-australischen Wasserstoffbrücke geprüft. Das Ergebnis: Herstellung und Transport von Wasserstoff und Wasserstoff-Derivaten von Australien nach Deutschland sind technisch, ökonomisch und rechtlich möglich. Eine entscheidende Frage dabei: Wie könnten die Importe im Inland ökonomisch und technisch sinnvoll verteilt werden?

Energieimporte sind für die deutsche Energieversorgung eine feste Größe. Konzentrierten sie sich bisher größtenteils auf Energieträger fossilen Ursprungs wie Erdgas und Erdöl, könnten sie schon bald um einen alternativen Energieträger erweitert werden: grünen Wasserstoff. Nach dem in der Fortschreibung der Nationalen Wasserstoffstrategie enthaltenen Zielbild wird der Gesamtwasserstoffbedarf in Deutschland 2030 zwischen 95 und 130 TWh liegen und nur über Importe zu decken sein. Innerhalb der nächsten zehn Jahre könnte also australischer Wasserstoff eine Rolle im deutschen Energiesystem spielen. Aber warum kommt ausgerechnet das 14.000 Kilometer entfernt gelegene Australien dafür in Betracht?

Energieversorgung stabil und resilient gestalten
Alle Voraussetzungen sprechen dafür: Erneuerbare Energien zur Herstellung von grünem Wasserstoff sind in Australien reichlich vorhanden. Zudem sind hinsichtlich einer zukunftssicheren und verlässlichen Versorgung die Bedingungen ideal: „Eine australisch-deutsche Wasserstoffbrücke verspricht eine stabile und für beide Seiten vorteilhafte Handelsbeziehung zwischen zwei demokratischen Staaten“, erklärt acatech-Präsident Jan Wörner die Voraussetzungen. „Wir haben jetzt die Gelegenheit, den Zukunftsmarkt Wasserstoff mitzugestalten und unseren Innovationsstandort damit resilienter gegen Abhängigkeiten zu machen. Dafür brauchen wir einen entschlossenen, gemeinsamen Aufbau von Infrastrukturen und Rahmenbedingungen.“

Allerdings werde die Technologie zum Transport flüssigen Wasserstoffs voraussichtlich innerhalb der nächsten 20 Jahre nicht verfügbar sein, stellte Robert Schlögl kürzlich im Rahmen eines Interviews mit dem Deutschlandfunk fest. Er ist Präsident der Alexander von Humboldt-Stiftung und acatech-Mitglied. Als Co-Projektleiter hat er HySupply ab dessen Start im November 2020 begleitet. Diese und weitere Herausforderungen beim Transport flüssigen Wasserstoffs sind der Grund, weshalb sich die Machbarkeitsstudie HySupply mit den Importmöglichkeiten von H2-Derivaten beschäftigt, also Ammoniak, synthetischem Erdgas, Methanol, Fischer-Tropsch-Produkten und dem Trägermedium LOHC.

---------- Werbung ----------

HySupply untersuchte von Ende 2020 bis Januar 2024, unter welchen technischen, ökonomischen und rechtlichen Voraussetzungen eine deutsch-australische Wasserstoffbrücke machbar ist. Durchgeführt wurde die vom Bundesministerium für Bildung und Forschung (BMBF) geförderte Machbarkeitsstudie von acatech – Deutsche Akademie der Technikwissenschaften und dem Bundesverband der deutschen Industrie. Die University of New South Wales (UNSW) leitete das australische Konsortium. Gefördert wurde dieses vom Department of Foreign Affairs and Trade (DFAT). Zusammen haben beide Seiten ein einzigartiges Netzwerk aus Fachleuten aus Wissenschaft und Wirtschaft vereint, um die gesamte Wertschöpfungskette zu untersuchen.

Transport- und Versorgungsrouten

Bereits in der Vergangenheit haben sich Studien mit verschiedenen Schwerpunkten von Wasserstoffimporten beschäftigt. Das Besondere an der vorliegenden, für HySupply von der Fraunhofer-Einrichtung für Energieinfrastrukturen und Geothermie IEG erstellten Studie: Erstmals befasst sich eine Publikation explizit mit der letzten Meile, die die Infrastruktur meist vor die größten Herausforderungen stellt – technischer wie wirtschaftlicher Natur. Robert Schlögl erklärt dazu: „Die vorgelegte Studie analysiert, bewertet und vergleicht erstmals flächendeckend und umfassend alle wesentlichen Wasserstoffderivate und Transportoptionen, vom Importhub bis hin zum Endverbraucher.“

Insgesamt sind es 543 Nachfragestandorte in Deutschland, die in diese Analyse eingeflossen sind. Sie wurden den verschiedenen Anwendungsfällen zugeordnet und hinsichtlich der Versorgungsmöglichkeiten mit Wasserstoff und dessen Derivaten untersucht. Anwendungsfälle – das sind die Herstellung von Ammoniak, Stahl, petrochemischen Basischemikalien und synthetischen Flugturbinenkraftstoffen. Außerdem zählen die Bereitstellung von Prozesswärme in der Metallerzeugung und -bearbeitung, die Herstellung von Glas und Keramik sowie die Papierindustrie dazu. Als Transportwege berücksichtigt die Studie Binnenschifffahrtsstraßen, Schienennetz, Wasserstoffkernnetz und Produktpipelines. So listet die Studie je Anwendungsfall die ökonomischen Vor- und Nachteile der jeweiligen Optionen auf.


Abb. 2: Gesamtdarstellung des analysierten Versorgungsnetzes und Verteilung der Nachfragestandorte
Quelle: Fraunhofer IEG

Flexibilität entscheidet über den H2-Hochlauf
Das H2-Kernnetz spielt eine wichtige Rolle in der Versorgung der Industrie. Die Studie weist darauf hin, dass alle identifizierten Standorte potenzieller Wasserstoffgroßnachfrager im Jahr 2035 durch das Wasserstoffkernnetz erreicht werden. Aber: Der Transport von Wasserstoff (-derivaten) per Binnenschiff oder Bahn stellt in vielen Fällen eine mögliche Alternative oder Ergänzung zur pipelinegebundenen Standortversorgung dar.

Rund elf Prozent der Standorte liegen bei einer Nachfrage von über 500 Gigawattstunden Wasserstoffäquivalent (GWhHeq). Größtenteils handelt es sich hier um Anwendungen wie die Herstellung von Basischemikalien und Stahl und den Einsatz von Ammoniak und synthetischen Flugturbinenkraftstoffen. 85 Prozent der untersuchten 543 Nachfragestandorte beanspruchen hingegen eine jährliche Nachfrage von weniger als 150 GWhHeq. Für diese Fälle ist die empfohlene Alternative zur pipelinebasierten Belieferung der Versorgungsanschluss per Binnenschiff oder Bahn.

Abschlussstudie fokussiert das Jahr 2035
Die Nationale Wasserstoffstrategie sieht vor, bis zum Jahr 2032 ein über 9.000 Kilometer langes Wasserstoffkernnetz zu installieren. Es soll die großen Wasserstoff-Einspeiser mit allen großen Verbrauchern verbinden. Die erste Phase des Markthochlaufs bis 2035 erfordert, auf die wichtigsten logistischen Fragestellungen Antwortoptionen anbieten zu können. Das gilt insbesondere für die Verteiloptionen des importierten Wasserstoffs und der Wasserstoffderivate, die für den Markthochlauf benötigt werden. Die im Rahmen des Projektabschlusses von HySupply vorgestellte Abschlussstudie mit dem Titel „Wasserstoff Verteiloptionen 2035“ fokussiert daher genau auf diesen entscheidenden Zeitraum bis 2035 und gibt einen zusätzlichen Ausblick auf die folgenden zehn Jahre bis 2045.


Abb. 3: Kostenoptimale Versorgungsketten
Quelle: Fraunhofer IEG

Inländische Transportkosten nur geringer Kostenanteil

Zwischen 3.400 und 16.000 Euro pro Tonne Wasserstoffäquivalent (EUR/tH₂eq): So weit reicht die in der Studie angegebene Spanne der festgestellten Bereitstellungskosten zwischen den unterschiedlichen Use Cases. Dabei machen die Importkosten mit einem Bereich von 41 bis 100 Prozent den Großteil aus, wohingegen die Kosten für die inländische Weiterverteilung mit durchschnittlich fünf Prozent Kostenanteil vergleichsweise gering ausfallen. In die ökonomische Bewertung flossen die Kosten für die Bereitstellung von Wasserstoff und seinen Derivaten ein. Zusätzlich wurden die spezifischen Transport- und Umwandlungskosten mit einbezogen.


Abb. 4: Kostenmodell zur Bewertung der Versorgungsketten
Quelle: Fraunhofer IEG

Karen Pittel, acatech-Präsidiumsmitglied und Leiterin des ifo Zentrums für Energie, Klima und Ressourcen, spricht sich für Flexibilität in den Verteiloptionen aus: „Diese alternativen Verteiloptionen spielen eine wichtige Rolle bei der Versorgung der Standorte mit vergleichsweise geringem Bedarf. Sie bringen die nötige Flexibilität mit, um in der ersten Phase des Markthochlaufs schnell in die Umsetzung zu kommen. Um das gewährleisten zu können, sollten wir die Leistungsfähigkeit der alternativen Verteiloptionen sichern und ausbauen.“

Dennoch wird der konsequente Ausbau des Wasserstoffkernnetzes insbesondere für Standorte mit hoher Nachfrage eine zentrale Rolle spielen. Den parallelen Ausbau der verschiedenen Verteiloptionen sieht daher auch Robert Schlögl als essenziell notwendig an: „Die Fertigstellung des Wasserstoffkernnetzes muss energisch weiterverfolgt werden. Gleichzeitig müssen wir auch bei anderen Aufgaben, wie dem Ausbau des Bahnnetzes oder dem Aufbau von CO2-Infrastruktur, ins Umsetzen kommen.“


Abb. 5: Kategorien der modellierten Versorgungskettenausprägungen
Quelle: Fraunhofer IEG

Handlungsempfehlungen zu den Wasserstoff-Verteiloptionen 2035

  • Das Wasserstoffnetz muss weiter ausgebaut werden. Dabei gilt es Speichermöglichkeiten in der Planung zu berücksichtigen.
  • Das bestehende Bahnstreckennetz muss erweitert und um neue Strecken ergänzt werden.
  • Die Wasserstoffimportstrategie sollte zeitnah publiziert werden.
  • In der Markthochlaufphase gilt es, Wasserstoffderivate zunächst stofflich und erst später als Wasserstoffträger zu nutzen.
  • Produktpipelines sollten langfristig eingesetzt werden, um die Verteilung von Wasserstoffderivaten zu unterstützen.
  • Nachhaltigkeitskriterien beim Import kohlenstoffhaltiger Wasserstoffderivate sollten über den Aufbau internationaler Zertifizierungssysteme garantiert werden.
  • Wasserstoff- und CO2-Infrastrukturen müssen gemeinsam geplant und unter Berücksichtigung beidseitiger Wechselwirkungen aufgebaut werden.

Literatur: www.acatech.de, wasserstoff-kompass.de, www.energiesysteme-zukunft.de
Spillmann, T.; Nolden, C.; Ragwitz, M.; Pieton, N.; Sander, P.; Rublack, L. (2024): Wasserstoff-Verteiloptionen 2035. Versorgungsmöglichkeiten von Verbrauchsstandorten in Deutschland mit importiertem Wasserstoff. Cottbus: Fraunhofer-Einrichtung für Energieinfrastrukturen und Geothermie IEG

AutorInnen: Iryna Nesterenko, Philipp Stöcker
Beide von acatech – Deutsche Akademie der Technikwissenschaften

Eine kniffelige Angelegenheit

Eine kniffelige Angelegenheit

Fliegen mit Brennstoffzellen und flüssigem Wasserstoff?

In der Forschung dienen Drohnen mit Brennstoffzellen (BZ) und flüssigem Wasserstoff als Modell für eine klimaschonendere Luftfahrt. Die unbemannten Fluggeräte zeigen jedoch auch, welche Hürden es noch zu überwinden gilt. Raketentechnik hilft dabei nicht.

Auf der Elbinsel Hamburg-Finkenwerder empfängt den Besucher ein bizarrer Kontrast zwischen gestern und morgen: Nicht weit von einer beschaulichen Backstein-Siedlung aus den 1950er-Jahren liegt das Zentrum für Angewandte Luftfahrtforschung (ZAL), ein futuristischer Gebäudekomplex mit Hallen, Laboren und Büros. Rund 600 Menschen aus aller Welt arbeiten hier daran, die Zukunft der zivilen Luftfahrt umweltverträglicher und im besten Fall klimaneutral zu machen. Der silberfarbene „Turm“ am Eingang verkündet das Forschungsziel bereits mit der Aufschrift: „Hydrogen. Flying green tomorrow.“ Dabei handelt es sich um einen 20 Meter hohen Tank, gefüllt mit gasförmigem Wasserstoff mit einem Druck von 45 bar.

Vom Empfang aus geht es durch lange Flure in den zweiten Stock, von wo aus sich der Blick in die sogenannte Akustikhalle öffnet. Im Prinzip ein Hangar, in dem es ein wenig nach Kunststoff riecht. An den Wänden verlaufen unzählige Rohre, zum Beispiel für Stickstoff, Wasserstoff oder Pressluft. Man hört das Summen und Surren von Aggregaten und Schaltanlagen sowie das Rauschen der Lüftung.

Im Brennstoffzellenlabor des ZAL zeigt Sebastian Altmann auf ein spinnenartiges Objekt aus schwarzer Kohlefaser: „Das ist unsere LiquiDrone, sozusagen der größere Bruder des ZALbatros.“ Beide Namen stehen für H2-Drohnen mit sechs Rotoren, die hier entwickelt wurden. Was bei der LiquiDrone in etwa so aussieht, als hätte man ihr eine rote Taucherflasche auf den Rücken geschnallt, ist ein karbonfaserverstärkter Tank mit gasförmigem Wasserstoff, komprimiert auf 350 bar, der für erste Flugversuche dient. Später wird er durch einen Flüssigwasserstofftank ersetzt. Unter dem Tank befinden sich zwei Kammern mit Brennstoffzellen, die das Gas zusammen mit Luft in Strom umwandeln, und der treibt die Elektromotoren an den Rotoren an.

---------- Werbung ----------

Der „kleinere Bruder“ ZALbatros, der mit ausgeklappten Rotoren gut zwei Meter im Durchmesser misst, ist genau genommen eine Forschungsplattform, die als Basis für wissenschaftliche Projekte dient. Zwei Brennstoffzellensysteme mit einer Leistung von jeweils 800 Watt versorgen die Elektromotoren des Hexakopters mit Strom. „Das Startgewicht beträgt dank des Kohlefaserrumpfes nur etwas mehr als zwölf Kilogramm und er ist dennoch stabil“, erläutert Altmann. „Beim Flugtest erreichte der ZALbatros trotz teilweise böigen Windes eine Flugdauer von zwei Stunden und zehn Minuten. Batteriebetriebene Drohnen müssen oft schon nach einer guten halben Stunde wieder landen, um die Akkus zu laden oder zu wechseln.“

Flüssigwasserstoff für höhere Reichweiten

Doch auch diese schon verlängerte Flugzeit ist nur der Anfang. Denn jetzt wird im aktuellen Forschungsprojekt LiquiDrone der gasförmige Wasserstoff durch seine flüssige Variante (liquefied hydrogen, LH2) ersetzt. „Aufgrund der höheren Energiedichte könnte so eine Drohne bis zu zwölf Stunden im Einsatz sein“, erklärt Ingenieur Altmann, der das Brennstoffzellenlabor im ZAL leitet. Dabei ist eine Umstellung auf flüssigen Wasserstoff alles andere als einfach. Die Speichertechnik für das verflüssigte Gas ist ebenso herausfordernd wie dessen Regasifizierung im Flugbetrieb, die Betankung mit LH2 und die Integration des Ganzen in ein Betriebssystem.

Lösungen dafür sollen im Rahmen des LiquiDrone-Forschungsprojektes gefunden werden, das vom Bundesverkehrsministerium mit knapp 900.000 Euro gefördert wird. An dem Projekt beteiligen sich außer dem ZAL auch die Universität Rostock sowie die Unternehmen RST Rostock-Systemtechnik und BaltiCo.

Für die künftig längere Flugzeit muss der Zustand einer Drohne aus der Ferne komplett erfasst und überwacht werden. Dazu sind Sensoren notwendig, die verschiedene Parameter erheben: Von der Leistungsaufnahme der Motoren über die Betriebstemperatur der Brennstoffzellen bis zur Signalstärke der Funkverbindung.


Abb. 2: H2-Experte Vijay Siva Prasad mit einer
H2-Drohne

Ein Tank für die Speicherung von flüssigem Wasserstoff wurde bereits konzipiert und gebaut. Ein Schwerpunkt im Projekt ist die schwierige Frage, wie sich bei möglichst leichtem und kompaktem Tank-Design Wärmebrücken minimieren lassen, die dazu führen würden, dass der flüssige Wasserstoff unkontrolliert verdampft und wieder gasförmig wird. Dieses Phänomen, auch „boil-off“ genannt, ist seit langem bekannt, nicht zuletzt aus der H2-Forschung der Automobilbranche.

Da die Brennstoffzelle gasförmigen Wasserstoff verwendet, wird der Treibstoff aus der Gasphase im Tankinneren entnommen. Durch geschickte Wärmezufuhr soll die Verdampfungsrate innerhalb des Energiespeichers an den Verbrauch angepasst werden. „Auf diese Weise lässt sich fast jedes Gramm Wasserstoff im Tank nutzen“, sagt Altmann. „Das steigert die Effizienz und verlängert die Flugzeit.“ Parallel dazu haben Forscher der Universität Rostock ein Sensorsystem entwickelt, mit dessen Hilfe der Füllstand des Flüssigwasserstoffs überwacht werden kann. Momentan ist die LiquiDrone oft zum Zweck von Tests im Einsatz, die als Vorbereitung für den Flug mit flüssigem Wasserstoff dienen. Der erste LH2-Flug soll im Frühjahr 2024 stattfinden.

Luftfahrtbranche steht vor großen Herausforderungen

Unbemannte Fluggeräte eignen sich gut, um die komplexen Herausforderungen meistern zu können, die Brennstoffzellen und Wasserstoff mit sich bringen. Batteriebetriebene Drohnen sind bereits jahrelang im Einsatz; nun sollen mit ihrer Hilfe Erkenntnisse gewonnen werden, die später skaliert und im besten Fall auf Passagiermaschinen übertragen werden können. Im Vordergrund des LiquiDrone-Projektes steht außer den genannten Fragestellungen zudem eine höhere Leistung, so Altmann, bei der zugleich die Wirtschaftlichkeit beachtet werden soll.

Die Luftfahrt weniger umwelt- und klimaschädlich zu machen, ist inzwischen nicht nur das Ziel der Forschung, sondern der Branche insgesamt. Rund 3,5 Prozent trägt der Flugverkehr nach Angaben des Deutschen Zentrums für Luft- und Raumfahrt (DLR) weltweit zur menschengemachten Klimaerwärmung bei. In dieser Bewertung sind alle Faktoren der Luftfahrt enthalten, das heißt, zu den CO2-Emissionen auch der Ausstoß von Stickoxiden „sowie die Wirkung von Kondensstreifen und Kondensstreifen-Zirren.“


Abb. 3: Sebastian Altmann, Leiter des BZ-Labors (Senior Expert Fuel Cell Lab), vor einem modularen Teststand für Brennstoffzellensysteme, der am ZAL entwickelt wurde

Klimaneutralität in der Luftfahrt zu erreichen ist allein aus technischen Gründen noch schwieriger als in anderen Bereichen. Der Vorstoß in die dritte Dimension sowie die physikalischen Bedingungen in der bisher üblichen Reiseflughöhe erfordern entweder ganz eigene Lösungen oder zumindest Anpassungen der herkömmlichen Technik.

Allein die BZ-Technologie, im landgebundenen Verkehr auf der Straße und der Schiene erfolgreich erprobt, ist im Luftverkehr nicht so einfach zu handhaben. „Anders als bei Anwendungen am Boden birgt der geringe Umgebungsdruck sowie die limitierte Wärmeabfuhr von luftfahrttechnischen Brennstoffzellensystemen besondere Herausforderungen“, erklärt Florian Becker. „Das Wassermanagement ist relativ komplex, jedoch von zentraler Bedeutung, um einen effizienten und langlebigen Betrieb zu ermöglichen.“ Wie man diese Herausforderungen durch innovative Ansätze und Betriebsstrategien bewältigen kann, untersucht er als wissenschaftlicher Mitarbeiter des DLR, ebenfalls im Brennstoffzellen-Labor des ZAL.

Nicht nur Airbus arbeitet an H2

Um die Erkenntnisse aus dem Labor in der Praxis zu testen, ist der Weg buchstäblich kurz: Nur drei Kilometer entfernt liegt das Werk des Flugzeugherstellers Airbus, der sich ebenfalls am ZAL beteiligt. Der Branchenriese hat bekanntlich das Ziel verkündet, im Jahr 2035 eine Passagiermaschine auf den Markt zu bringen, die mithilfe eines Wasserstoffantriebs erheblich emissionsärmer als heutige Flugzeuge sein soll. Als drittgrößter Standort für die zivile Luftfahrt weltweit verfügt Hamburg über ein dicht geknüpftes Netz aus Hochschulen, Instituten und branchenspezifischen Firmen, die Forschung und Entwicklung mit Fokus auf Nachhaltigkeit betreiben. Dazu tragen insbesondere kleine und mittelständische Unternehmen (KMU) bei.

So hat beispielsweise der Ingenieur-Dienstleister Teccon, der allein im H2-Bereich 35 Mitarbeiter beschäftigt, das öffentlich geförderte Forschungsprojekt H2 Finity initiiert und die Mittel dafür eingeworben. Dabei geht es um die Entwicklung eines skalierbaren H2-Antriebsstrangs für leichte und mittlere Fluggeräte, die in einem Verbund aus KMU und unter Mitwirkung des ZAL umgesetzt wird.

„Anhand einer Drohne mit einer Spannweite von 3,5 Metern und 25 Kilogramm Startgewicht erproben wir den hybrid-elektrischen Antriebsstrang“, erklärt Jörg Manthey von Teccon, federführend für das Projekt zuständig. Der H2-Antriebsstrang werde optimiert und für höhere Leistungen weiterentwickelt. „Unser Ziel ist ein modular skalierbares Konzept, das von Tragflügel-Drohnen bis hin zu Kleinflugzeugen reicht, die dann einen umweltfreundlichen und leisen Antrieb besitzen sollen.“ Skalierbar bedeutet in diesem Fall, dass der gesamte Betrieb der Drohne schließlich auch mit 500 Kilogramm Startgewicht funktionieren soll.

Weil die Zertifizierungs- und Zulassungsverfahren in der Luftfahrtbranche aus Sicherheitsgründen besonders aufwändig sind, denken die beteiligten Teams die notwendigen Verfahren gleich mit, betont Manthey, „damit die Technologie nach Projektende schnell eingesetzt werden kann“. Pionierleistungen wie der erste Flug mit flüssigem Wasserstoff einerseits und die mühselige LH2-Forschung an Drohnen andererseits sind kein Widerspruch, sondern gehören zusammen. Denn so wichtig solche Pilotflüge auch sind, geht damit nicht automatisch eine Lösung für eine industrietaugliche Serienproduktion einher.

Dass bemannte Flugkörper mit flüssigem Wasserstoff fliegen, kennt man seit Jahrzehnten aus der Raketenforschung. Allerdings sind Raketen bislang nicht wiederverwertbar, und wie schwierig der Weg dahin ist, kann die Öffentlichkeit ja an entsprechenden Experimenten von US-Raumfahrtunternehmen mitverfolgen. Der Umgang mit gasförmigem Wasserstoff ist erheblich einfacher als der mit flüssigem. „Abgesehen davon, dass LH2 erstmal hergestellt werden muss, braucht man dafür ein geeignetes Transportgefäß und ein Betankungssystem, das sich sicher bedienen lässt“, erklärt Manthey. „Das alles muss serientauglich sein und schließlich zertifiziert werden.“ Nur dann kann der Umgang mit dem klimaneutralen Treibstoff eines Tages so selbstverständlich werden wie heute mit Benzin oder Kerosin.


Abb. 4: Prinzipieller Aufbau eines Flüssigwasserstoffspeichers, wie er künftig in einer LiquiDrone getestet werden soll. Dieses Modell dient nur dazu, die Technik gegenüber Studenten oder Besuchern zu erklären.

Autorin: Monika Rößiger

Brennstoffzellensysteme sorgen für Netzhärtung

Brennstoffzellensysteme sorgen für Netzhärtung

Interview mit Christian Leu und Benedikt Eska von Axiosus

Ein wichtiger, aber häufig vernachlässigter Anwendungsbereich für H2-Technologie ist die unterbrechungsfreie Stromversorgung. Damit es nicht zu Lichtflackern und erst recht nicht zu Black-outs kommt, sind sogenannte USV-Systeme unabdingbar. Im besten Fall, wenn das Netz stabil ist, kommen sie zwar nie zum Einsatz, dennoch ist ihre Anwesenheit von zentraler Bedeutung. HZwei sprach darüber mit Benedikt Eska und Christian Leu, den Geschäftsführern der Axiosus Energy GmbH, zudem ging es um das Unternehmen selbst sowie die Technologie-Plattform Clean Power Net (CPN).


Abb.: Christian Leu

 HZwei: Fangen wir mal mit Ihrer BZ- und Wasserstoff-Vita an. Sie sind ja beide schon sehr lange im H2-Geschäft. Seit wann und wo bzw. als was?

Leu: Alles fing an mit meinem Einstieg als Entwicklungsingenieur für Brennstoffzellentechnik beim Berliner Start-up Heliocentris im Jahr 1998. Zuletzt war ich dort verantwortlich für die Produktlinie Stationäre-Brennstoffzellen-Stromversorgungen und dabei auch involviert in die ersten kommerziellen Roll-outs für BZ-Netzersatzanlagen beim BOS-Digitalfunk in Deutschland.

---------- Werbung ----------

Eska: Meine erste ernsthafte Berührung mit dem Thema Brennstoffzelle war bereits vor über 25 Jahren. 2001 bin ich dann bei Proton Motor eingestiegen und war 2006 einer der Verantwortlichen für den Börsengang in London. 2009 gründete ich mein Beratungsunternehmen mit Fokus auf Brennstoffzelle und Wasserstoff.

Herr Leu, nach dieser langen Zeit bei Heliocentris waren Sie zunächst allein in Berlin aktiv. Warum dann der Zusammenschluss mit Herrn Eska?

Leu: Nach der Insolvenz der Heliocentris übernahm ich 2017 beim Ingenieur-Dienstleister ITK Engineering, einem Unternehmen der Bosch-Gruppe, eine Stelle für den Aufbau von Kompetenz und Geschäft im Bereich der Wasserstoff- und Brennstoffzellen-Technologie. Im Laufe der Zeit entstand bei mir der Wunsch, nicht nur Entwickler zu unterstützen, sondern vor allem Anwendern zu helfen, fertige Entwicklungen nachhaltig erfolgreich in den kommerziellen Einsatz zu bringen. Da das mit dem Geschäftsmodell der ITK nicht gut vereinbar war, suchte ich nach Möglichkeiten für ein eigenes Business. In Benedikt fand ich den idealen Partner – gleichgesinnt und in den Erfahrungen und Stärken komplementär.

Herr Eska, nach dieser jahrelangen Selbständigkeit – was hat Sie dazu bewogen, ein eigenes Unternehmen mit Herrn Leu zu gründen?

Eska: Es gab im meinem Beratungsunternehmen immer mehr Anfragen, ob ich nicht auch bei der Umsetzung unterstützen kann. Aus diesem Grund war ich schon länger am Überlegen, die Rechtsform zu ändern und meine Tätigkeit auf eine breitere Basis zu stellen. Dann kam etwas der Zufall hinzu, dass ich im richtigen Moment mit Christian telefoniert habe. Nachdem wir schon bei anderen Gelegenheiten zusammengearbeitet hatten, haben wir uns intensiv ausgetauscht und die gemeinsame Basis gesehen. Zugegebenermaßen hätten wir vor Corona und der Lernkurve mit Online-Meetings in der Form wahrscheinlich vor ein paar Jahren nicht gemeinsam gegründet.

Seit wann genau arbeiten Sie jetzt zusammen?

Eska: Gegründet haben wir gemeinsam 2022, aber tatsächlich kennen wir uns schon aus dem VDMA-Arbeitskreis Brennstoffzelle beziehungsweise – für die Kenner – aus dem Vorläufer, dem AK Berta. Das müsste so 2003 oder 2004 gewesen sein.

Bevor wir jetzt zu Ihren Dienstleistungen kommen: Wofür steht Axiosus?

Leu: Die Frage bekommen wir natürlich öfters. Axiosus ist ein Kunstwort und hat unsere Tätigkeit bereits im Namen. Axiosus ist zusammengesetzt aus dem griechischen „axiópistos“ für zuverlässig und dem englischen „sustainability“ für Nachhaltigkeit. Axiosus Energy steht folglich für zuverlässige, nachhaltige Energieversorgungslösungen.

Verstehe. Was genau bieten Sie denn an?

Eska: Wir sehen uns stark an der Schnittstelle zwischen den Systemanbietern und den Anwendern. Die Anbieter wollen sich auf ihre Standardprodukte fokussieren und die Anwender suchen nach einer für sie optimalen Lösung. Wir bringen beide Seiten zusammen. Das startet bei der technischen Konzeption, der Standortplanung bis hin zur Umsetzung vor Ort mit den unterschiedlichen Gewerken. Dafür setzen wir auf unsere Partner, zum Beispiel aus der Elektro- und Tiefbaubranche. Aus Sicht des Anwenders können wir bei geeigneten Projekten auch als Generalunternehmer auftreten. Dabei sind wir herstellerneutral und technologieoffen unterwegs.

Zusammengefasst sind es zwei Säulen: Beratung und Projektentwicklung. Unsere Hardware-Projekte sind derzeit hauptsächlich im Bereich Notstromversorgung für die kritische Infrastruktur. In der Beratung sind wir auch im Bereich der Elektrolyse, Wasserstoffversorgung und strategisch-technologischen Unternehmensentwicklung unterwegs.

Können Sie uns mal bitte einen Einblick geben, wie groß dafür der Markt ist – allein hier in Deutschland?

Leu: Ohne Berücksichtigung weiterer Anwendungen aus anderen Bereichen der kritischen Infrastruktur sind im BOS-Funknetz allein 3.800 Basisstationen im Betrieb, mit Leistungsanforderungen von weniger als 5 kW. Wir gehen in dem Leistungsbereich eher von mehr als 10.000 Anwendungen mit Hochverfügbarkeitsanforderungen aus.

Sie kümmern sich ja beispielsweise um den BOS-Digitalfunk in Brandenburg. Können Sie kurz mal anhand dieses Projekts erläutern, was Sie da machen?

Eska: In Brandenburg sind wir im Unterauftrag des Brennstoffzellenherstellers Advent Technologies aus Dänemark tätig. Wir koordinieren alle notwendigen Planungen und Errichtungsarbeiten für Notstromsysteme. Zusätzlich sind wir der erste Ansprechpartner für den Betreiber bei technischen Fragen. In der nächsten Phase werden wir uns zudem um die Wartungs- und Servicearbeiten kümmern.

Es gibt da dieses tolle Wort „Netzhärtung“. Was bedeutet das?

Leu: Ziel der Netzhärtung ist es, das gesamte BOS-Funknetz für 72 Stunden abzusichern. Hierzu werden die vorhandenen Batterie-USV-Anlagen meist um stationäre Netzersatzanlagen ergänzt. Viele Bundesländer setzen dabei auf Brennstoffzellenlösungen.

Axiosus war 2022 auf einem CPN-Workshop, ist aber laut Website kein Partner von Clean Power Net (CPN). In den vergangenen Jahren war es sehr ruhig um diesen Firmenzusammenschluss. Das war mal eins der Leuchtturmvorhaben der Nationalen Organisation für Wasserstoff- und Brennstoffzellen-Technologie (NOW). Passiert dort noch etwas?

Eska: Wir sehen CPN als wertvollen Zusammenschluss aus Herstellern und Zulieferern. Nachdem wir selbst nicht Mitglied sind, können wir zu den aktuellen CPN-Aktivitäten nichts sagen. Bei dem Workshop 2022 durften wir als Gäste über die Betriebserfahrungen aus Brandenburg berichten.

Was ist Ihr neustes Vorhaben?

Leu: Bei unserem neuesten Projekt helfen wir aktuell einem Konzern bei der Auslegung und Beschaffung von Wasserstoffspeichern mit zugehörigem Logistikkonzept. Daneben sind wir weiterhin mit dem Aufbau des Unternehmens beschäftigt. Zuerst müssen wir dieses Jahr weiter Personal an den Start bringen, um der Nachfrage gerecht zu werden. Wenn sich alle Anfragen materialisieren, werden wir zu größeren Leistungen bei den Stromversorgungen und weiteren Aufträgen als Generalunternehmer kommen.

Letzte Frage: Sind Sie eigentlich auch international aktiv?

Eska: Auch wenn wir noch nicht lange unter Axiosus Energy agieren, haben wir bereits Kunden aus EU- und Nicht-EU-Ländern. Unsere Zusammenarbeit mit der dänischen Advent Technologies A/S haben wir ja bereits erwähnt.

Herzlichen Dank für die Beantwortung der Fragen.

Interviewer: Sven Geitmann

Bischof-Niemz in Enertrag-Vorstand berufen

Bischof-Niemz in Enertrag-Vorstand berufen

Der uckermärkische Projektierer Enertrag hat Dr. Tobias Bischof-Niemz in den Vorstand berufen. Seit Anfang April 2024 ist der bisherige Bereichsleiter Neue Energielösungen nun für das neu geschaffene Vorstandsressort „Projekte International & Technologie“ zuständig. Das bislang dreiköpfige Führungsgremium wird dadurch um eine Person erweitert.

Jörg Müller, Aufsichtsratsvorsitzender, Gründer und Mehrheitseigentümer des ostdeutschen Unternehmens, erklärte: „Wir sind überzeugt, dass Dr. Bischof-Niemz mit seiner umfangreichen Erfahrung und Expertise die ideale Besetzung für das Vorstandsressort Projekte International & Technologie ist. Sein Engagement für Nachhaltigkeit und seine erfolgreiche Bilanz in der Auslegung und Umsetzung erneuerbarer Verbundkraftwerke, die Strom-, Wasserstoff- und Wärmeerzeugung koppeln, machen ihn zu einer Schlüsselfigur für die weitere Entwicklung von Enertrag auf globaler Ebene.“

Die Firma Enertrag, die inzwischen über 1.000 Mitarbeitende beschäftigt, trägt damit dem wachsenden internationalen Interesse Rechnung. Der 47-Jährige verantwortete bereits vor seiner jetzigen Einberufung in den Vorstand die globalen Aktivitäten und Sektorkopplungsansätze des Unternehmens.

CEP neu aufgestellt

CEP neu aufgestellt

Neuer Vorstand, neue Mitglieder und eine neue Struktur – so präsentiert sich in ihrer aktuellen Pressemitteilung die Clean Energy Partnership (CEP) e.V. Weiterhin mit dabei ist Jörg Starr von GP Joule, der fortan von Elena Hof, Jet H2 Energy, und Paul Karzel, Lifte H2, unterstützt wird. Zu diesen beiden neuen Gesichtern kommt auch eine geänderte Gesellschaftsform: Die vor 22 Jahren gegründete ehemalige Private Partnership agiert jetzt als eingetragener Verein.

Zu den nach eigener Aussage „ambitionierten Zielen“ zählt beispielsweise die Abnahme von nahezu 190 Wasserstofftankstellen in Europa. Damit einher soll die Ertüchtigung zahlreicher Dienstleister gehen, die für die Abnahmen dieser Standorte erforderlich ist. Damit soll laut CEP nun die Entwicklungsphase starten, in der der Weg für den weiteren Hochlauf der Wasserstoffmobilität und -infrastruktur in Deutschland geebnet werden soll.

Elena Hof betont: „Unsere Arbeit fokussiert sich auf den Straßenverkehr, insbesondere den Heavy-Duty-Bereich, aber wir denken alle Verkehrsträger mit. Denn Politik und Industrie brauchen starke Verbündete, um den aktuellen und zukünftigen Aufgaben für einen CO2-freien Straßenverkehr gerecht zu werden.“

Paul Karzel erklärt dazu: „Ein weiterer Ausbau der Infrastruktur für Brennstoffzellenfahrzeuge ist von entscheidender Bedeutung für den Markthochlauf, nicht nur für die Mobilität, sondern als effizienter, sauberer und kostentechnisch sinnvoller Vorreiter für die gesamte Wasserstoffwirtschaft.“ Jörg Starr ergänzt: „Ein nachhaltiger Umbau der Energiewirtschaft ist ohne Wasserstoff nicht möglich. Die von der CEP initiierten Betankungsstandards sind dabei unverzichtbar.“

Besonders freut sich das Trio, mit Enginius ein neues aktives Mitglied in der Partnerschaft begrüßen zu dürfen.

---------- Werbung ----------
Die Wasserstoffwende

Die Wasserstoffwende

„Leicht verständlich und unterhaltsam“ – mit diesem Anspruch ist Monika Rößiger an ihr Buch gegangen, um insbesondere den technisch nicht so Versierten näher zu bringen, was Wasserstoff so alles kann. Für die Wissenschaftsjournalistin und HZwei-Redakteurin ist Wasserstoff „der Schlüssel zur Energiewende“. „Er gibt uns die Chance, auf Erdöl, Kohle und Erdgas zu verzichten“, so die Hamburgerin.

Dafür widmet sie sich auf 256 Seiten verschiedenen Pilotprojekten sowie den Menschen, die sich, beispielsweise in der Energieversorgung, in der Stahlindustrie oder der Hafenlogistik, bereits mit Wasserstoff beschäftigen. So berichtet sie von eigenen Erfahrungen bei der Besichtigung von Projekten wie AquaVentus oder dem Norddeutschen Reallabor. Dementsprechend lautet der Untertitel: „So funktioniert die Energie der Zukunft.“ Auf technische Grundlagen geht Rößiger, die auch für Tagesspiegel und Spektrum der Wissenschaft schreibt, am Buchanfang aber nur in groben Zügen ein.

Ihr Buch im Reportagestil vermittelt sehr anschaulich, wie der aktuelle Entwicklungsstand in den verschiedenen Anwendungsbereichen (z. B. Luft- und Schifffahrt, Nutzfahrzeuge, Eisenbahnen) sowie im Wärmesektor, beim H2-Transport und in der Metallindustrie ist. Mit einem gut dokumentierten Quellenverzeichnis genügt ihr Buch zudem allen wissenschaftlichen Ansprüchen.

preloader