Das SHIMMER-Projekt

Das SHIMMER-Projekt

Europäisches Multi-Gasnetzwerk geht an den Start

Im EU-Projekt SHIMMER arbeitet die Bundesanstalt für Materialforschung und -prüfung (BAM) an einer umfassenden Wissensdatenbank. Dort sollen wichtige Informationen zu Standards für sichere Materialien und Komponenten sowie zur europäischen Gasinfrastruktur bereitgestellt werden. SHIMMER wird von der norwegischen Forschungsorganisation SINTEF geleitet. Das Projekt vereint zwölf europäische Institutionen, darunter staatliche Einrichtungen und Gasnetzbetreiber aus Spanien, Italien, Norwegen, Polen, Belgien, den Niederlanden und Deutschland.

Die Einspeisung von Wasserstoff (H₂) in bestehende Gasnetze bringt sowohl technische als auch regulatorische Herausforderungen mit sich. Diese betreffen insbesondere die Materialintegrität von Pipelines und die Harmonisierung gesetzlicher Anforderungen. Im Projekt SHIMMER (Safe Hydrogen Injection Modelling and Management for European Gas Network Resilience) geht es darum, das Verständnis für die Integration von Wasserstoff in die bestehende Gasinfrastruktur zu verbessern und damit den Markthochlauf sicherer Wasserstofftechnologien insgesamt zu unterstützen. Das Forschungsvorhaben startete bereits im September 2023 und wird im August 2026 enden. Die Finanzierung erfolgt durch das EU-Programm „Horizon Europe – Clean Hydrogen Partnership“.

---------- Werbung ----------

Funktionalität und Sicherheit des Gasnetzes
Bereits der Titel „Safe Hydrogen Injection Modelling and Management for European Gas Network Resilience“ verweist auf die mit dem Projekt verbundene Zielsetzung: Für eine geplante höhere Einspeisung von Wasserstoff ins existierende Gasnetz sollen zuverlässige Modelle beziehungsweise Simulationswerkzeuge und sicheres Management bereitgestellt werden, um die Ausfallsicherheit beziehungsweise Robustheit des europäischen Gasnetzes zu gewährleisten.

„Die Einspeisung von H₂ ins existierende Gasnetz in höheren Anteilen oder in höherer Konzentration ist mit technischen Herausforderungen verbunden, weil die Infrastruktur ursprünglich nicht dafür vorgesehen ist. Deshalb müssen Werkzeuge, Prüfmethoden, Simulationsprogramme zum Planen und zum Betrieb, aber auch eine Übersicht über die bereits existierende Infrastruktur geschaffen werden, um die Sicherheit des Netzes und dessen Funktionalität zu gewährleisten“, erläutert der Projektverantwortliche Dr.-Ing. Oded Sobol von der Bundesanstalt für Materialforschung und -prüfung.

Im Rahmen des genannten übergeordneten Ziels werden weitere spezifische Ziele verfolgt, wie die Kartierung und Bereitstellung einer Übersicht über die existierende Infrastruktur in Bezug auf verwendete Materialien, Komponenten, Technologien und die Eignung dieser für H2. Diese Daten werden Bestandteil einer öffentlichen Wissensdatenbank sein, die dem Nutzer frühzeitig Informationen über die Eignung der Infrastruktur zur Verfügung stellt. Zudem sollen geeignete Materialtestverfahren sowie Werkzeuge oder Methoden für die Inspektion und zum Auffinden von Lecks bzw. Undichtigkeiten entwickelt werden.

Auch gelte es, Simulationswerkzeuge, zum Beispiel für die Planung oder Simulation der Gasqualität bei variierender Einspeisung und variierendem Verbrauch, bezogen auf Rate und Konzentration, zu schaffen. Die Gaszusammensetzung bei den Projektpartnern ist ebenfalls eine Fragestellung der Forschenden. Eine bestimmte Gasqualität soll durch das Projekt sichergestellt und Strategien für die Einspeisung von H₂ ins Gasnetz sollen entwickelt werden. Nicht zuletzt ist geplant, Guidelines für das Risikomanagement zu erstellen und Simulationsstudien für das Durchspielen verschiedener Szenarien zu erarbeiten.

Für die Projektpartner ist die Thematik indes nicht neu. So haben die Gasnetzbetreiber die H₂-Einspeisung in ihren Strategien und Zukunftsplänen fest verankert. Und auch die involvierten Forschungsgesellschaften haben auf ihren jeweiligen Spezialgebieten bereits Erfahrungen mit dem Thema sammeln können.

Vorgängerprojekte werden berücksichtigt
Somit werden in SHIMMER Daten von teilnehmenden Industriepartnern (hauptsächlich europäischen Fernnetz- und Verteilnetzbetreibern) gesammelt. Im Projekt wird auch auf den SyWeSt-H2-Bericht (Tests mit repräsentativen Materialproben von Rohren des deutschen Gasnetzes) zurückgegriffen. „Möglicherweise wird es auch eine Korrelation zur VerifHy-Datenbank (www.verifhy.de) geben, in der Hersteller für Rohrleitungen die Informationen zur H2-Readiness ihrer Produkte zusammengefasst haben“, erläutert der Projektverantwortliche bei SINTEF Industry, Dr. Heiner Schümann.

Weitere Projekte, die auf für die Datenbank nutzbare Resultate hin untersucht werden, sind zum Beispiel:

  • das EU-Projekt HIGGS (Liste über Eignung von TSO-Rohrmaterial – unvollständig)
  • das britische Projekt HyDeploy (Feldtests mit 20 % H2-Einspeisung in Großbritannien)
  • die EU-Projekte THyGA (Testen von Verbraucherendgeräten und ihrer Eignung für H2-Erdgas-Mix, z. B. Wärmepumpen, Boiler, Öfen, CHP [combined heat and power], Verteiler etc.), CEN H2 PNR (Literaturrecherche für viele relevante Bereiche, unter anderem Gasqualität und Stahlrohre), CANDHy (Kompatibilität für nicht-metallische Materialien).

Mit den an diesen Projekten Beteiligten wird über die Möglichkeit einer Zusammenarbeit diskutiert.

Europäische Projekte

Fünf Arbeitspakete
Inhaltlich besteht das Projekt aus fünf Arbeitspaketen, welche zeitgleich durchgeführt werden sollen. „Es gibt jedoch Abhängigkeiten von unterschiedlichen Aufgaben innerhalb der Arbeitspakete, die bei der zeitlichen Planung zu berücksichtigen sind“, sagt Schümann.

Das erste von SINTEF geleitete Arbeitspaket trägt den Titel „Project Manangement and Coordination“ (Projektmanagement und Koordination). „Hier geht es darum sicherzustellen, dass das Projekt mit den gegebenen Mitteln und der erwarteten Qualität innerhalb des Zeitplans durchgeführt wird“, so Schümann. „Gasinfrastruktur und Betriebsbedingungen“

Das zweite Arbeitspaket „Gas Infrastructure and Operational Conditions“ (Gasinfrastruktur und Betriebsbedingungen) steht unter der Regie der BAM. „Unsere Aufgabe ist es, Informationen über die existierende europäische Gasinfrastruktur in Bezug auf metallische Materialien (Rohre) zu beschaffen. Dabei nutzen wir sowohl existierende Daten von anderen Projekten als auch aus der Literatur und sammeln außerdem neue Angaben von unseren Partnern“, sagt Sobol. Zudem beschaffe man Informationen über Betriebsbedingungen. Auch geltende Standards und Gesetze würden gesichtet, zusammengestellt sowie hinsichtlich ihrer Eignung überprüft. „Letztendlich wollen wir alle Informationen in einer benutzerfreundlichen Datenbank organisieren und diese öffentlich zugänglich machen“, so Sobol.

Das dritte Arbeitspaket ist überschrieben mit „Integrity Management and Safety“ (Integritätsmanagement und Sicherheit) und fällt unter die Zuständigkeit des spanischen Forschungszentrums TECNALIA (Zentrum für angewandte Forschung und Technologieentwicklung). Hier geht es darum, die Eignung von gängigen Material- und Kompatibilitätstestverfahren für die geplante höhere H2-Einspeisung zu überprüfen. Außerdem erfolgt eine GAP-Analyse unter dem Gesichtspunkt des Bedarfs nach Anpassung, Änderungen oder neuen Verfahren und Vorschriften. Auch werden Guidelines für Inspektionsmethoden für Rohrleitungen erarbeitet und Empfehlungen für Lecktestmethoden konzipiert. Schließlich geht es darum, Empfehlungen für die Risikoanalyse in Bezug auf Lecks zu geben und Werkzeuge dafür zu erarbeiten.

Im vierten Arbeitspaket „Flow Assurance“ (Sicherung des Durchflusses), geleitet von der Niederländischen Organisation für Angewandte Naturwissenschaftliche Forschung (TNO), werden realistische Testverfahren beschrieben und existierende Simulationsprogramme auf ihre Eignung hin bewertet. Zudem soll eine Auswahl geeigneter Programme verbessert und angepasst werden, so dass damit entsprechende Szenarien durchgespielt werden können. Schließlich sollen geeignete Technologien für die Messung und Kontrolle der Gasqualität bewertet werden.

Im fünften und letzten Arbeitspaket „Dissemination, Communication and Exploitation“ (Verbreitung, Kommunikation und Verwertung), geleitet von GERG – Die Europäische Gas-Forschungsgruppe, wird die Verbreitung der Ergebnisse gesichert, das heißt, es wird dafür gesorgt, dass diese die richtigen Endnutzer, Entscheidungsgremien und Interessengruppen erreichen. Auch ist die GERG für die Publikation von Artikeln in Zeitschriften und weiteren öffentlichen Medien ebenso zuständig wie für die Organisation von Konferenzen. Des Weiteren besteht ihre Aufgabe in der Kommunikation mit Interessengruppen während der Projektphase, um Rückmeldung und notwendige Informationen zu bekommen.

Bei ihrer Arbeit sehen sich die Forschenden im Konsortium vor einige Herausforderungen gestellt: „Zunächst wäre die Vertraulichkeit der Informationen von Industriepartnern zu nennen. Gleichzeitig haben wir die Intention, so viel wie möglich zu veröffentlichen“, sagt Sobol. Außerdem sei die Bezeichnung von Materialien, zum Beispiel Stahlqualitäten, nicht hundertprozentig standardisiert, und es würden europaweit unterschiedliche Materialien mit teilweise unterschiedlicher Namensgebung verwendet. Auch differiere die Umgebung (Gasqualität, Klima), der die verschiedenen Materialien ausgesetzt sind. Zudem verfolgten die Industriepartner im Hinblick auf die Szenarien für Simulationsstudien verschiedene Interessen. Eine Einigkeit über die Beimischung von H₂ (z. B. 2,5 oder 20 %) bestehe ebenfalls nicht. „In unserem Projekt sind sieben Länder repräsentiert. Das Problem besteht auch darin, wie wir die Informationen aus den restlichen europäischen Ländern abdecken sollen“, sagt Schümann.

Publikation der Zwischenergebnisse steht kurz bevor
Erste Ergebnisse gibt es bereits. „Wir warten jedoch derzeit auf die Genehmigung und Freigabe durch die European Commission. Danach werden diese online zugänglich sein und auch auf unserer Webseite verlinkt werden“, sagt Schümann. Die Veröffentlichung der Datenbank auf der Projektwebseite (https://shimmerproject.eu/) sowie anderer wissenschaftlicher Publikationen sei, so Sobol, bis zum Projektende vorgesehen.

Industrie und Gesetzgebung profitieren
Nach Abschluss des Projekts im August 2026 sollen die meisten Ergebnisse, einschließlich der Datenbank, öffentlich zugänglich sein. Davon profitieren kann zum einen die Industrie: Die Planung bei der H2-Einspeisung wird vereinfacht. Netzbetreiber, Lieferanten und Hersteller von Rohren und Ausrüstung sparen Zeit und Kosten. Zum anderen können gesetzgebende Organe ihre Richtlinien anpassen. „Heutzutage gibt es für Europa weder harmonisierte Anforderungen oder Einspeiselimits noch Vorschriften für Prüf- und Eignungsverfahren für die H2-Einspeisung. Die Ergebnisse dieses Projektes sind eine Grundlage für einen solchen Standardisierungsprozess“, sagt Schümann.

https://shimmerproject.eu

Eisen als günstiges Katalysatormaterial

Eisen als günstiges Katalysatormaterial

Neuer Katalysator löst H2 aus Ammoniak heraus

Um die Rückgewinnung von Wasserstoff aus Ammoniak zu erleichtern und zu beschleunigen, haben Forschende des Instituts für Anorganische Chemie der Christian-Albrechts-Universität zu Kiel (CAU) in ihrem Projekt AmmoRef (04/2021-03/2025) zusammen mit ihren Kooperationspartnern einen aktiveren und kostengünstigeren Katalysator entwickelt. Die Ergebnisse dieser Arbeit sind in dem Wasserstoff-Leitprojekt TransHyDE des Bundesministeriums für Bildung und Forschung (BMBF) festgehalten. AmmoRef ist eins von zehn TransHyDE-Projekten, die vom BMBF gefördert werden. Dabei sollen bereits bestehende Technologien für den Wasserstofftransport verbessert werden.

Abb. 1: Ammoniak kann aus „grünem Wasserstoff“ hergestellt und dann über weite Strecken, z. B. per Tankschiff, transportiert werden. Wie man wieder reinen Wasserstoff aus Ammoniak rückgewinnen kann, wird im TransHyDE-Forschungsverbund „AmmoRef“ untersucht. Bisher gibt es noch keine großindustriell einsetzbare Technologie zur Reformierung von Ammoniak, daher wird unter den technologischen Grundlagen auch die Katalysatorentwicklung erforscht.

---------- Werbung ----------

Abb-1.jpg

Quelle: Projektträger Jülich im Auftrag des BMBF

Die Möglichkeit, Energie aus Wind- oder Solarkraft zu speichern, spielt für die Energiewende eine zentrale Rolle. „Die Speicherung von Energie in Form von chemischen Verbindungen wie Wasserstoff hat viele Vorteile. Die Energiedichte ist hoch, und auch die chemische Industrie benötigt Wasserstoff für viele Prozesse“, sagt Malte Behrens, Professor für Anorganische Chemie an der CAU Kiel und Teilprojektleiter im AmmoRef-Verbund. Außerdem lässt sich durch Elektrolyse mit Strom aus erneuerbaren Energiequellen „grüner Wasserstoff“ herstellen, ohne dass CO2 entsteht.

Wasserstoff aus Regionen zu importieren, in denen Wind- und Solarstrom günstig ist, ist allerdings nicht einfach. Eine Möglichkeit ist die chemische Umwandlung von Wasserstoff in Ammoniak, das selbst bereits relativ viel Wasserstoff enthält. Für den Transport von Ammoniak über weite Strecken existiert bereits eine ausgereifte Infrastruktur. „Ammoniak lässt sich zum Transportieren einfach verflüssigen. Es wird heute schon im Megatonnenmaßstab hergestellt, weltweit verschifft und gehandelt und ist daher für uns interessant“, sagt Chemiker Dr. Shilong Chen, Wissenschaftler im Kieler AmmoRef-Teilprojekt von TransHyDE. Gemeinsam erforschen Chen und Behrens, wie sich Wasserstoff nach dem Transport wieder aus Ammoniak freisetzen lässt.


Aufnahme mit einem Transmissionselektronenmikroskop: nanoskaliger Aufbau des Eisen-Kobalt-Katalysators. Die vielen bimetallischen Partikel, hier als dunkle Flecken zu erkennen, werden durch das Trägermaterial auf der Nanoebene voneinander getrennt und tragen so zu einer großen aktiven Oberfläche des Katalysators bei.
Quelle: Franz-Philipp Schmidt, Thomas Lunkenbein, adaptiert: Shilong, C.et al. Nature Communications (2024), https://creativecommons.org/licenses/by/4.0/

Bei einer Transformation des Wasserstoffs in Ammoniak geht weniger Gas verloren als bei anderen Verfahren. Ammoniak lasse sich, so Behrens, bereits bei einem Druck von acht Bar verflüssigen. Tankschiffe ließen sich problemlos damit befüllen. „Ein großer Vorteil gegenüber anderen chemischen Verfahren, wie zum Beispiel LOHC, ist auch, dass Wasserstoff in flüssigem Ammoniak über eine sehr hohe Speicherdichte verfügt,“ sagt Behrens.

Die Problemstellung bestand für die Wissenschaftler zu Projektbeginn darin, einen Katalysator zu entwickeln, der eine schnelle Umwandlung von Ammoniak in Wasserstoff am Zielort erlaubt. „Hierfür sind große Anlagen erforderlich“, erläutert Behrens. Derzeit gebe es jedoch noch keine industrielle Anwendung für die Reformierung von Ammoniak in diesem Maßstab.

Kobalt zur Aktivierung von Eisen
Ziel der Forschenden war, möglichst günstige Materialien für die Katalyse zu finden. Zudem sollte die voraussichtliche Anwendung des Katalysators skalierbar sein. Das Material Ruthenium bildet derzeit die Benchmark in der Forschung. Eisen ist, so Behrens, jedoch das kostengünstigste Gebrauchsmetall. „Das Problem ist aber, dass preiswerte Eisenkatalysatoren unter einer geringen Aktivität aufgrund einer zu starken Eisen-Stickstoff-Bindungsenergie im Vergleich zu aktiveren Metallen wie Ruthenium leiden. Diese Einschränkung kann jedoch durch die Zugabe von Kobalt überwunden werden“, erläutert er. Durch die Kombination zweier Basismetalle (Eisen und Kobalt), bei der hochaktive, bimetallische Oberflächen mit einer geringeren Metall-Stickstoff-Bindungsenergie und weiteren Eigenschaften, die sonst nur von sehr viel teureren Edelmetallen bekannt sind, entstehen, sei der Katalysator, welcher über einen Metallgehalt höher als 70 Prozent verfüge, nicht nur hochaktiv, sondern auch bezahlbar.

„Hochaktiv“ bedeutet dabei, dass er über eine sehr hohe Umwandlungsgeschwindigkeit verfügt. „Unser Katalysator erreicht über 90 Prozent von Ruthenium und ist um etwa 20 Prozent leistungsfähiger als unsere Nickelbenchmark“, sagt Behrens. Zudem haben die Forscher eine besondere Herstellungsmethode entwickelt, die eine sehr hohe Metallbeladung erlaubt. Bis zu 74 Prozent des Materials bestehen aus aktiven Metallpartikeln. Diese wechseln sich mit Trägerpartikeln ab, so dass dazwischen Hohlräume im nanoskaligen Bereich entstehen – wie ein poröser, metallischer Nano-Schwamm. Die Struktur ist stabil genug, um die hohen Temperaturen (etwa 600 °C), die bei der Zersetzung von Ammoniak entstehen, auszuhalten.

Bisheriges Ergebnis
Durch die Legierung von Eisen mit Kobalt konnte die Nitrierung von Eisen, die zu einer zu schwachen Bindungsenergie und dadurch zu einer geringeren Aktivität führte, unterdrückt und die Stickstoff-Bindungsenergie zusätzlich so beeinflusst werden, dass sich die Bindungsenergien näher an die Spitze des Aktivitätsvulkans bewegen, was zu einer hochaktiven und katalytischen Leistung führt. Gezeigt werden konnte auch, dass das Legieren von Eisen durch andere Metalle mit schwacher Stickstoffadsorptionsenergie einen einfachen und allgemeinen Ansatz zur Herstellung eines hochaktiven und nitridfreien Katalysators für die Ammoniak-Zersetzungsreaktion bietet.


Prof. Malte Behrens und Dr. Shilong Chen in ihrem Kieler Labor vor einem Teststand für neue Katalysatoren
Quelle: Julia Siekmann, Uni Kiel

Ammoniaksynthese und -zersetzung
Die Herstellung von Ammoniak durch das Haber-Bosch-Verfahren veränderte die Welt, da sie die Produktion von Düngemitteln im industriellen Maßstab ermöglichte. 2021 wurden 235 Mio. Tonnen Ammoniak hergestellt, was es zur volumenstärksten produzierten Chemikalie machte. Diese Produktion könnte in naher Zukunft weiter gesteigert werden, da Ammoniak aufgrund seines hohen Wasserstoffgehalts und seiner Energiedichte sowie der günstigen Infrastruktur für Transport und Speicherung als Träger- und Speichermaterial für regenerativ erzeugten Wasserstoff dazu beitragen könnte, die Klimakrise abzumildern. In diesem Szenario könnte Wasserstoff aus Ammoniak durch dessen Zersetzung freigesetzt werden.

Im Gegensatz zur Ammoniaksynthese hat ihre umgekehrte Reaktion, die Ammoniakzersetzung, keine vergleichbare großindustrielle Anwendung gefunden, sondern wird seit über einem halben Jahrhundert hauptsächlich akademisch eingesetzt, um den Reaktionsmechanismus der Ammoniaksynthese bei Umgebungsdruck an Katalysatoren zu untersuchen, die für die Ammoniaksynthesereaktion entwickelt wurden. Die aktivsten Katalysatoren für diese Synthese sind ruthenium-basierte, aber der kommerzielle Aspekt lässt die weniger aktiven, jedoch weitaus kostengünstigeren Eisenkatalysatoren attraktiver erscheinen. Grund für deren moderate Aktivität ist die Nitrierung. In dem hier vorliegenden AmmoRef-Teilprojekt konnte gezeigt werden, wie die Nitrierung unterdrückt und eine Stickstoffbindungsenergie, ähnlich wie bei Ruthenium, durch eine Legierung des Eisens mit Kobalt erreicht werden kann.

Die derzeitige Herausforderung bestehe darin, den Kobaltanteil zu reduzieren. Dies sei zum einen aus Kostengründen, zum anderen aber auch wegen der aktuellen politischen Rahmenbedingungen, unter denen Kobalt gewonnen wird, geboten. Die Voraussetzungen für ein Upscaling seien bereits da, aber es gelte, Maßnahmen für weitere zu eruieren. Zudem müsse ermittelt werden, was noch zu tun sei, um die Stabilität und Aktivität des Katalysators weiter zu erhöhen. Eine Zugabe von Promotoren, von Stoffen, die die Aktivität eines Katalysators erhöhen, werde erwogen.

Die Synthesebemühungen werden momentan vom 1-Liter- in den 100-Liter-Maßstab überführt. Der Katalysator soll nun weiter untersucht und aus der Grundlagenforschung in die Anwendung übertragen werden. Ziel der Wissenschaftler ist es, einen industriellen Maßstab für den Katalysator zu erreichen.

Autorin: Anette Weingärtner

preloader