Hzwei Blogbeitrag

Beitrag von Anette Weingärtner

28. November 2024

Titelbild: Ammoniak kann aus „grünem Wasserstoff“ hergestellt und dann über weite Strecken, z. B. per Tankschiff, transportiert werden. Wie man wieder reinen Wasserstoff aus Ammoniak rückgewinnen kann, wird im TransHyDE-Forschungsverbund „AmmoRef“ untersucht. Bisher gibt es noch keine großindustriell einsetzbare Technologie zur Reformierung von Ammoniak, daher wird unter den technologischen Grundlagen auch die Katalysatorentwicklung erforscht.

Bildquelle: Projektträger Jülich im Auftrag des BMBF

Eisen als günstiges Katalysatormaterial

Neuer Katalysator löst H2 aus Ammoniak heraus

Um die Rückgewinnung von Wasserstoff aus Ammoniak zu erleichtern und zu beschleunigen, haben Forschende des Instituts für Anorganische Chemie der Christian-Albrechts-Universität zu Kiel (CAU) in ihrem Projekt AmmoRef (04/2021-03/2025) zusammen mit ihren Kooperationspartnern einen aktiveren und kostengünstigeren Katalysator entwickelt. Die Ergebnisse dieser Arbeit sind in dem Wasserstoff-Leitprojekt TransHyDE des Bundesministeriums für Bildung und Forschung (BMBF) festgehalten. AmmoRef ist eins von zehn TransHyDE-Projekten, die vom BMBF gefördert werden. Dabei sollen bereits bestehende Technologien für den Wasserstofftransport verbessert werden.

Abb. 1: Ammoniak kann aus „grünem Wasserstoff“ hergestellt und dann über weite Strecken, z. B. per Tankschiff, transportiert werden. Wie man wieder reinen Wasserstoff aus Ammoniak rückgewinnen kann, wird im TransHyDE-Forschungsverbund „AmmoRef“ untersucht. Bisher gibt es noch keine großindustriell einsetzbare Technologie zur Reformierung von Ammoniak, daher wird unter den technologischen Grundlagen auch die Katalysatorentwicklung erforscht.

---------- Werbung ----------
Ksb

Abb-1.jpg

Quelle: Projektträger Jülich im Auftrag des BMBF

---------- Werbung ----------
EW25 ThePlace2B 600x100px

Die Möglichkeit, Energie aus Wind- oder Solarkraft zu speichern, spielt für die Energiewende eine zentrale Rolle. „Die Speicherung von Energie in Form von chemischen Verbindungen wie Wasserstoff hat viele Vorteile. Die Energiedichte ist hoch, und auch die chemische Industrie benötigt Wasserstoff für viele Prozesse“, sagt Malte Behrens, Professor für Anorganische Chemie an der CAU Kiel und Teilprojektleiter im AmmoRef-Verbund. Außerdem lässt sich durch Elektrolyse mit Strom aus erneuerbaren Energiequellen „grüner Wasserstoff“ herstellen, ohne dass CO2 entsteht.

Wasserstoff aus Regionen zu importieren, in denen Wind- und Solarstrom günstig ist, ist allerdings nicht einfach. Eine Möglichkeit ist die chemische Umwandlung von Wasserstoff in Ammoniak, das selbst bereits relativ viel Wasserstoff enthält. Für den Transport von Ammoniak über weite Strecken existiert bereits eine ausgereifte Infrastruktur. „Ammoniak lässt sich zum Transportieren einfach verflüssigen. Es wird heute schon im Megatonnenmaßstab hergestellt, weltweit verschifft und gehandelt und ist daher für uns interessant“, sagt Chemiker Dr. Shilong Chen, Wissenschaftler im Kieler AmmoRef-Teilprojekt von TransHyDE. Gemeinsam erforschen Chen und Behrens, wie sich Wasserstoff nach dem Transport wieder aus Ammoniak freisetzen lässt.

Abb 2
Aufnahme mit einem Transmissionselektronenmikroskop: nanoskaliger Aufbau des Eisen-Kobalt-Katalysators. Die vielen bimetallischen Partikel, hier als dunkle Flecken zu erkennen, werden durch das Trägermaterial auf der Nanoebene voneinander getrennt und tragen so zu einer großen aktiven Oberfläche des Katalysators bei.
Quelle: Franz-Philipp Schmidt, Thomas Lunkenbein, adaptiert: Shilong, C.et al. Nature Communications (2024), https://creativecommons.org/licenses/by/4.0/

Bei einer Transformation des Wasserstoffs in Ammoniak geht weniger Gas verloren als bei anderen Verfahren. Ammoniak lasse sich, so Behrens, bereits bei einem Druck von acht Bar verflüssigen. Tankschiffe ließen sich problemlos damit befüllen. „Ein großer Vorteil gegenüber anderen chemischen Verfahren, wie zum Beispiel LOHC, ist auch, dass Wasserstoff in flüssigem Ammoniak über eine sehr hohe Speicherdichte verfügt,“ sagt Behrens.

Die Problemstellung bestand für die Wissenschaftler zu Projektbeginn darin, einen Katalysator zu entwickeln, der eine schnelle Umwandlung von Ammoniak in Wasserstoff am Zielort erlaubt. „Hierfür sind große Anlagen erforderlich“, erläutert Behrens. Derzeit gebe es jedoch noch keine industrielle Anwendung für die Reformierung von Ammoniak in diesem Maßstab.

Kobalt zur Aktivierung von Eisen
Ziel der Forschenden war, möglichst günstige Materialien für die Katalyse zu finden. Zudem sollte die voraussichtliche Anwendung des Katalysators skalierbar sein. Das Material Ruthenium bildet derzeit die Benchmark in der Forschung. Eisen ist, so Behrens, jedoch das kostengünstigste Gebrauchsmetall. „Das Problem ist aber, dass preiswerte Eisenkatalysatoren unter einer geringen Aktivität aufgrund einer zu starken Eisen-Stickstoff-Bindungsenergie im Vergleich zu aktiveren Metallen wie Ruthenium leiden. Diese Einschränkung kann jedoch durch die Zugabe von Kobalt überwunden werden“, erläutert er. Durch die Kombination zweier Basismetalle (Eisen und Kobalt), bei der hochaktive, bimetallische Oberflächen mit einer geringeren Metall-Stickstoff-Bindungsenergie und weiteren Eigenschaften, die sonst nur von sehr viel teureren Edelmetallen bekannt sind, entstehen, sei der Katalysator, welcher über einen Metallgehalt höher als 70 Prozent verfüge, nicht nur hochaktiv, sondern auch bezahlbar.

„Hochaktiv“ bedeutet dabei, dass er über eine sehr hohe Umwandlungsgeschwindigkeit verfügt. „Unser Katalysator erreicht über 90 Prozent von Ruthenium und ist um etwa 20 Prozent leistungsfähiger als unsere Nickelbenchmark“, sagt Behrens. Zudem haben die Forscher eine besondere Herstellungsmethode entwickelt, die eine sehr hohe Metallbeladung erlaubt. Bis zu 74 Prozent des Materials bestehen aus aktiven Metallpartikeln. Diese wechseln sich mit Trägerpartikeln ab, so dass dazwischen Hohlräume im nanoskaligen Bereich entstehen – wie ein poröser, metallischer Nano-Schwamm. Die Struktur ist stabil genug, um die hohen Temperaturen (etwa 600 °C), die bei der Zersetzung von Ammoniak entstehen, auszuhalten.

Bisheriges Ergebnis
Durch die Legierung von Eisen mit Kobalt konnte die Nitrierung von Eisen, die zu einer zu schwachen Bindungsenergie und dadurch zu einer geringeren Aktivität führte, unterdrückt und die Stickstoff-Bindungsenergie zusätzlich so beeinflusst werden, dass sich die Bindungsenergien näher an die Spitze des Aktivitätsvulkans bewegen, was zu einer hochaktiven und katalytischen Leistung führt. Gezeigt werden konnte auch, dass das Legieren von Eisen durch andere Metalle mit schwacher Stickstoffadsorptionsenergie einen einfachen und allgemeinen Ansatz zur Herstellung eines hochaktiven und nitridfreien Katalysators für die Ammoniak-Zersetzungsreaktion bietet.

Abb 3
Prof. Malte Behrens und Dr. Shilong Chen in ihrem Kieler Labor vor einem Teststand für neue Katalysatoren
Quelle: Julia Siekmann, Uni Kiel

Ammoniaksynthese und -zersetzung
Die Herstellung von Ammoniak durch das Haber-Bosch-Verfahren veränderte die Welt, da sie die Produktion von Düngemitteln im industriellen Maßstab ermöglichte. 2021 wurden 235 Mio. Tonnen Ammoniak hergestellt, was es zur volumenstärksten produzierten Chemikalie machte. Diese Produktion könnte in naher Zukunft weiter gesteigert werden, da Ammoniak aufgrund seines hohen Wasserstoffgehalts und seiner Energiedichte sowie der günstigen Infrastruktur für Transport und Speicherung als Träger- und Speichermaterial für regenerativ erzeugten Wasserstoff dazu beitragen könnte, die Klimakrise abzumildern. In diesem Szenario könnte Wasserstoff aus Ammoniak durch dessen Zersetzung freigesetzt werden.

Im Gegensatz zur Ammoniaksynthese hat ihre umgekehrte Reaktion, die Ammoniakzersetzung, keine vergleichbare großindustrielle Anwendung gefunden, sondern wird seit über einem halben Jahrhundert hauptsächlich akademisch eingesetzt, um den Reaktionsmechanismus der Ammoniaksynthese bei Umgebungsdruck an Katalysatoren zu untersuchen, die für die Ammoniaksynthesereaktion entwickelt wurden. Die aktivsten Katalysatoren für diese Synthese sind ruthenium-basierte, aber der kommerzielle Aspekt lässt die weniger aktiven, jedoch weitaus kostengünstigeren Eisenkatalysatoren attraktiver erscheinen. Grund für deren moderate Aktivität ist die Nitrierung. In dem hier vorliegenden AmmoRef-Teilprojekt konnte gezeigt werden, wie die Nitrierung unterdrückt und eine Stickstoffbindungsenergie, ähnlich wie bei Ruthenium, durch eine Legierung des Eisens mit Kobalt erreicht werden kann.

Die derzeitige Herausforderung bestehe darin, den Kobaltanteil zu reduzieren. Dies sei zum einen aus Kostengründen, zum anderen aber auch wegen der aktuellen politischen Rahmenbedingungen, unter denen Kobalt gewonnen wird, geboten. Die Voraussetzungen für ein Upscaling seien bereits da, aber es gelte, Maßnahmen für weitere zu eruieren. Zudem müsse ermittelt werden, was noch zu tun sei, um die Stabilität und Aktivität des Katalysators weiter zu erhöhen. Eine Zugabe von Promotoren, von Stoffen, die die Aktivität eines Katalysators erhöhen, werde erwogen.

Die Synthesebemühungen werden momentan vom 1-Liter- in den 100-Liter-Maßstab überführt. Der Katalysator soll nun weiter untersucht und aus der Grundlagenforschung in die Anwendung übertragen werden. Ziel der Wissenschaftler ist es, einen industriellen Maßstab für den Katalysator zu erreichen.

Autorin: Anette Weingärtner

0 Kommentare

Einen Kommentar abschicken

preloader