Weltweit einzigartiges H2-Testlabor

Weltweit einzigartiges H2-Testlabor

Elektrolyseure auf dem Prüfstand

Im „Hydrogen Lab Bremerhaven“ können Hersteller und Betreiber von Elektrolyseuren ihre Anlagen auf die Probe stellen. Die fluktuierende Einspeisung von Windstrom ist im Gegensatz zur gleichmäßigen Fahrweise eine Herausforderung. Wie sich die damit verbundenen komplexen Prozesse optimieren lassen, testen Ingenieure nun im Realbetrieb.

Ein grauer, windiger Tag in Bremerhaven. Der Ingenieur Kevin Schalk vom Fraunhofer IWES zeigt mir das Hydrogen Lab Bremerhaven (HLB) – ein weitläufiges Testgelände unter freiem Himmel. Es befindet sich neben einem blaugestrichenen Hangar am ehemaligen Flughafen Luneort und enthält die wichtigsten Bausteine für ein klimaneutrales Energiesystem: einen PEM-Elektrolyseur, einen Alkaline-Elektrolyseur, drei Kompressoren, Niederdruck- und Hochdruckspeicher für Wasserstoff (bis 40 bar oder bis 425 bar), Brennstoffzellen, ein wasserstofffähiges Blockheizkraftwerk.

---------- Werbung ----------

„Unser Hydrogen Lab ist modular und maximal flexibel aufgebaut“, erklärt Kevin Schalk. Alle Komponenten des Testfelds sind durch Trassen miteinander verbunden, in denen die Strom- und Datenkabel sowie die Wasserstoffleitungen verlaufen. Die Rohre für Wasser und Abwasser sind unterirdisch verlegt. Über den Anlagen thront die Leitwarte, in der alle Informationen zusammenlaufen und von der aus die Komponenten überwacht und gesteuert werden.

Zwischen den Anlagen gibt es freie Plätze, damit Hersteller oder Betreiber ihre eigenen Elektrolyseure testen lassen können. So könne jeder Prüfling unabhängig von Untersuchungen in anderen Teilen des Testlabors betrieben werden, erklärt Schalk. Bei Bedarf ist aber auch das Gegenteil möglich: Der Prüfling wird mit anderen Teilen des Wasserstofflabors zusammen betrieben.

---------- Werbung ----------

Rund um das H2-Testgelände erstrecken sich Wiesen bis zum Horizont, mit Windrädern bestückt. Die mit acht Megawatt imposanteste Anlage dieser Art steht direkt neben dem Freiluftlabor; ein grauer Gigant, dessen Rotoren sich gemächlich im Wind drehen. „Als die AD8-180 im Jahr 2016 in Betrieb ging, war sie die größte Windenergieanlage der Welt“, erläutert Kevin Schalk, der das Hydrogen Lab Bremerhaven (HLB) leitet. Die langgezogenen Rotorblätter lassen erkennen, dass der Prototyp eigentlich für den Einsatz auf dem Meer gedacht war. Nun soll die Anlage bald dazu dienen, die Herstellung von Wasserstoff aus Windstrom unter realen Bedingungen zu testen. Bis zu einer Tonne des grünen Gases soll hier täglich produziert werden.

Verschiedene Elektrolyseure im direkten Vergleich

Das Team um Kevin Schalk wird sich unter anderem mit der Frage beschäftigen, wie verschiedene Typen von Elektrolyseuren mit einer Windenergieanlage im realen Maßstab interagieren. Da ist zum einen der 1-Megawatt-PEM-Elektrolyseur, der destilliertes Wasser in Wasserstoff und Sauerstoff spaltet. Diese Art der Wasserspaltung findet im sauren Milieu statt, im Gegensatz zur alkalischen Elektrolyse im basischen Milieu. Als Elektrolyt dient Kalilauge (Kaliumhydroxid-Lösung, KOH) in einer Konzentration von 20 bis 40 Prozent.

Ein alkalischer Elektrolyseur (AEL) besitzt eine Anionenaustauschmembran, lässt also die OH-Ionen durch. Er ist günstiger in der Anschaffung und zeichnet sich durch Langzeitstabilität aus. Die teuersten Komponenten eines Elektrolyseurs sind jeweils die Zellstapel (engl. stacks) sowie die Leistungselektronik, also Gleichrichter und Transformator. Die Frage nach dem jeweiligen Wirkungsgrad lässt sich nach Angaben von Schalk kaum pauschal beantworten – zumindest für Gesamtanlagen.

Wird ein Elektrolyseur mit fluktuierendem Strom aus erneuerbaren Energien betrieben statt wie im Normalbetrieb durchgehend, ist das aus verschiedenen Gründen eine Herausforderung: Eine dynamische Fahrweise belastet die Materialien stärker, und es kann im Teillastbetrieb zu Gasverunreinigungen kommen, die schließlich zur Abschaltung des Systems führen. Im HLB sollen unterschiedliche Betriebszustände miteinander verglichen werden, also Volllast oder Teillast; außerdem die Startzeiten aus dem kalten oder warmen Standby.

„Wir können die Fahrweise eines Elektrolyseurs zum Beispiel auf die Sieben-Tage-Prognose der Windenergieanlage einstellen und diese Fahrweise dann testen“, erklärt der Ingenieur. „Unsere Elektrolyseure können zusammen maximal 2,3 Megawatt aufnehmen. Es gibt bislang allgemein nur wenige Daten und Erkenntnisse darüber, wie sich Megawatt-Elektrolyseure mit fluktuierendem Windstrom verhalten. Die vorliegenden Daten sind meistens Simulationen und Studien, die auf Messdaten in kleineren Systemen basieren und dann hochgerechnet wurden.“

Alleinstellungsmerkmal des H2-Forschungslabors

Ein paar Hundert Meter vom Testlabor entfernt befindet sich das Dynamic Nacelle Testing Laboratory (DyNaLab) des Fraunhofer IWES, ein großer Gondel-Prüfstand, der über ein virtuelles 44-MVA-Mittelspannungsnetz verfügt. An diesen wird auch das Hydrogen Lab angebunden, wodurch sich die elektrotechnische Integration der Anlagen ins Stromnetz erproben lässt. „Dynamische Änderungen der Netzfrequenz oder Spannungseinbrüche können auf diese Weise gezielt nachgebildet werden, um etwa die Auswirkungen auf einen Elektrolyseur zu untersuchen“, sagt Kevin Schalk. Das sei ein Alleinstellungsmerkmal und ermögliche den Forschern, zu testen, was in Zukunft immer wichtiger werde: Elektrolyse im netzstabilisierenden Betrieb. Dazu gehören auch die beiden technischen Varianten zur Rückverstromung: das wasserstofffähige Blockheizkraftwerk sowie die Brennstoffzellensysteme.

Abb. 2: Container mit PEM-Elektrolyseur.

Ein Laie kann sich wohl kaum vorstellen, wie schwierig es ist, ein so hochkomplexes System an einem Standort aufzubauen. Allein die Elektrolyseure benötigen ja nicht nur einen Wasseranschluss, von dem aus das Wasser erst in eine Aufbereitungsanlage kommt, damit es „ultrarein“ ist, bevor es in den Elektrolyseur-Stack geleitet werden kann, erklärt Kevin Schalk. Der dann entstehende Wasserstoff muss ebenfalls aufbereitet und das restliche Wasser entfernt werden, was in einer Trocknungsanlage geschieht. Zudem muss der bei der Wasserspaltung freiwerdende Sauerstoff aufgefangen und sicher gelagert werden. Im Idealfall ließe sich der Sauerstoff zur weiteren Verwertung, etwa in einem Industrie- oder Gewerbebetrieb oder in einer Kläranlage, nutzen.

„Und das war nur der Bereich Wasser, nun kommt die Stromseite“, fährt Kevin Schalk fort. „Da haben wir den Anschluss an das öffentliche Stromnetz, gegebenenfalls müssen wir noch transformieren, um die passende Spannungsebene zu erreichen. Danach folgt der Umrichter, um von Wechsel- auf Gleichspannung zu kommen. Dann geht der Strom in die Stacks der Wasserspaltungsanlage. Wann immer das Netz vorne ‘zuckt‘, also sich die Frequenz oder Spannung über ein gewisses Maß hinaus ändert, muss der Elektrolyseur dahinter damit klarkommen. Und wenn Leistungselektronik nicht richtig eingestellt ist, schaltet sich das System ab.“

Zudem sei auch die thermische Seite des Systems zu beachten. „Anfangs muss der Elektrolyseur geheizt werden“, erklärt Kevin Schalk. „Später, wenn er konstant läuft, muss er in der Regel gekühlt werden, um den jeweils optimalen Arbeitspunkt zu halten. Das geht zwangsläufig mit energetischen Verlusten einher.“ So weit zum PEM-Elektrolyseur. Bei der alkalischen Elektrolyse muss noch die Kalilauge entfernt und recycelt werden.

Fit machen für den Offshore-Einsatz

Ein weiteres Schwerpunktthema für das Forschungslabor findet im Rahmen des Leitprojektes H2Mare statt: Dazu dient ein 100 Kubikmeter fassendes Meerwasserbecken sowie eine Entsalzungsanlage, für die die Abwärme der Elektrolyseure genutzt werden soll. Dem liegt die Erkenntnis zu Grunde, dass sich größere Mengen von grünem Wasserstoff im dichtbesiedelten Deutschland wohl am ehesten auf dem Meer erzeugen lassen. Damit muss das elektrochemische Verfahren zur Spaltung von Wasser hochseetauglich werden, denn in Zukunft sollen Elektrolyseure auch direkt mit Offshore-Windanlagen verbunden werden. Das erfordert wiederum die Kopplung mit einer Meerwasser-Entsalzungsanlage, wobei diese Kombination energetisch günstig ist, weil die Abwärme des Elektrolyseurs zur Entsalzung genutzt werden kann.

Ingenieur Schalk weist darauf hin, dass er und seine Kollegen bei all ihren Untersuchungen die deutschen oder europäischen Regularien beachten, wie zum Beispiel die EU-Nachhaltigkeitszertifizierung RED II (Renewable Energy Directive). Die legt fest, unter welchen Bedingungen Wasserstoff als „grün“ zertifiziert werden kann, und genau diesen wollen sie ja hier erzeugen. „Die Abnehmer brauchen garantiert grünen Wasserstoff, zum Beispiel für die Busse im öffentlichen Personennahverkehr.“ Eine H2-Tankstelle für Nutzfahrzeuge entsteht in Bremerhaven beim Bushof. Neben dem ÖPNV gibt es weitere potenzielle Abnehmer in der Region: Etwa einen Logistikunternehmer, der sein Schiff in Cuxhaven mit gasförmigem Wasserstoff betreiben möchte. Oder das öffentliche Mobilitätsunternehmen Eisenbahnen und Verkehrsbetriebe Elbe-Weser (EVB) als Betreiber der Wasserstoff-Regionalbahn in Niedersachsen.

Das Hydrogen Lab Bremerhaven kooperiert mit dem Norddeutschen Reallabor, einem vom Bundeswirtschaftsministerium geförderten Großforschungsprojekt, in dem mehrere Bundesländer die Sektorenkopplung auf Basis von Wasserstoff vorantreiben. Das HLB erhält Fördermittel von insgesamt rund 16 Millionen Euro aus dem Europäischen Fonds für regionale Entwicklung (EFRE) sowie vom Land Bremen. Im Mai dieses Jahres geht das HLB vom Probe- in den Normalbetrieb und wird zunächst gut 100 Tonnen Wasserstoff pro Jahr produzieren. In der zweiten Phase rechnet Kevin Schalk mit über 200 Tonnen. „Wir werden die erste große Produktionsstätte von grünem H2 in Norddeutschland sein.“

Abb. 3: Blick über das HLB mit freien Stellflächen – links die Leitzentrale

 

Grundlegende Veränderungen

Grundlegende Veränderungen

Windkrafträder
Energie- und Landwirtschaft nachhaltig denken

Was für ein Jahr! So viel wie 2020 ist selten passiert – insbesondere im Energiesektor, speziell im H2-Segment. Nationale Wasserstoffstrategie, Nationaler Wasserstoffrat, Leitstelle Wasserstoff, European Green Deal, European Clean Hydrogen Alliance, RED II, EEG-Novelle, IPCEI Wasserstoff – um nur einen Teil zu nennen (s. HZwei-Heft Jan. 2021, S. 13 – 24).

(mehr …)
Grundlegende Veränderungen

Die Brennstoffzelle ist an der Börse angekommen

Aktienverlauf
© www.wallstreet-online.de

Täglich kommen neue gute Nachrichten über den Ticker, die mitteilen, dass Unternehmen, Kommunen, Staaten und Ländergemeinschaften wie die EU in Sachen Klimawandel Gas geben wollen und eine wichtige Säule dabei eindeutig der Wasserstoff sein wird. Es gibt zwar noch Grabenkämpfe, welche Produktionsart von Wasserstoff im Vordergrund stehen soll, aber am Ende des Tages wird es „grüner“ Wasserstoff sein – auf dem Wege dorthin auch „blauer“.

(mehr …)
Iridium könnte Elektrolyseurhochlauf bremsen

Iridium könnte Elektrolyseurhochlauf bremsen

Vulcano-Plot verschiedener Metalloxide für die Sauerstoff-Evolution, nach [2]
Vulcano-Plot verschiedener Metalloxide für die Sauerstoff-Evolution, nach [2]

Obwohl mithilfe von erneuerbaren Energien erzeugter Wasserstoff schon seit Jahrzehnten als mögliche Alternative zu fossilen Energieträgern im Gespräch ist, spielt er bislang nur eine Nebenrolle. Die Zeichen stehen aber in jüngster Zeit auf Wechsel, so dass „grüner“ Wasserstoff im Energiesektor einen Aufschwung bekommen könnte: Immer leistungsfähigere Elektrolysesysteme sind verfügbar, und die Preise für diese Anlagen sinken.

(mehr …)
Mit Solarenergie in eine saubere Zukunft

Mit Solarenergie in eine saubere Zukunft

Photoreactor


Die Sonne ist heiß – sehr heiß. Per Strahlung gelangen tagtäglich Unmengen an Energie zur Erde. Über Jahrmillionen hinweg hat sich die Natur an diese stetige Energiezufuhr angepasst und ausgefeilte Mechanismen entwickelt, um diese Energie sinnvoll zu nutzen. In ungleich kürzerer Zeit ist es Wissenschaftlern innerhalb der vergangenen 20 Jahre gelungen, die Sonnenstrahlung per Photovoltaik in Strom umzuwandeln – mit inzwischen vergleichsweise hohem Wirkungsgrad. (mehr …)

preloader