Hzwei Blogbeitrag

Beitrag von Oliver Büker

30. Mai 2024

Titelbild: Düsenhalter für kritische Venturidüsen

Bildquelle:

Aufbau einer metrologischen Infrastruktur

Durchflussmessung von Hochdruckgas- und Flüssigwasserstoff

Im Bereich der Durchflussmesstechnik ist der Einsatz von Wasserstoff, insbesondere von regenerativ erzeugtem Wasserstoff, als Prozessgas und Energieträger in vielen Anwendungen in den Fokus gerückt. Aufgrund der Notwendigkeit, Speicherkapazitäten effizient zu nutzen, muss Wasserstoff unter hohem Druck oder in flüssiger Form gespeichert werden. Forschungs- und Entwicklungsbedarf besteht bei der messtechnisch abgesicherten Mengenmessung für den Nieder- bis Hochdruckbereich von gasförmigem und verflüssigtem Wasserstoff. Darüber hinaus müssen entsprechende Rückführungsketten auf das SI-System für den weiten Bereich von Betriebsbedingungen aufgebaut werden, um valide Aussagen über die Messgenauigkeit und Stabilität der eingesetzten Durchflussmessgeräte treffen zu können. Das EMPIR-Projekt 20IND11 MetHyInfra adressiert diese Herausforderungen durch die Bereitstellung verlässlicher Daten, messtechnischer Infrastruktur, validierter Verfahren und normativer Beiträge.

Kritische Venturidüsen (Critical Flow Venturi Nozzles, CFVNs) sind heute weit verbreitet und stellen eine standardisierte und anerkannte Methode zur Durchflussmessung dar. Die wichtigsten Details bezüglich Form und Messmodell sind in der Norm ISO 9300 festgelegt. CFVNs werden im eichpflichtigen Verkehr eingesetzt und gelten als zuverlässige Normale mit hoher Langzeitstabilität. Die kostengünstigen und wartungsarmen CFVNs liefern bei gut definierter Geometrie stabile, reproduzierbare Messergebnisse und sind nur vom verwendeten Gas abhängig. Die Norm ISO 9300 beschreibt zwei Düsenformen, die zylindrische und die toroidale Form. In der Realität weichen die nach dieser Norm gefertigten Düsenkonturen jedoch von diesen Idealformen ab. In den meisten Fällen liegen die realen Formen zwischen den beiden Idealformen.

Die erreichbare Messunsicherheit wird auch durch die Qualität der Modelle der thermophysikalischen Eigenschaften der zu messenden Gase begrenzt. Die aktuelle Referenzgleichung (Equation of State, EoS) für normalen Wasserstoff (n-H2) wurde von Leachman et al. entwickelt [1]. Da für n-H2 nur begrenzte thermodynamische Messdaten mit vergleichsweise hohen Messunsicherheiten vorliegen, sind die Unsicherheiten für die verschiedenen Eigenschaften im Allgemeinen um eine Größenordnung höher als bei anderen Gasen.

Daher wurden in diesem Projekt neue Schallgeschwindigkeitsmessungen (speed of sound, SoS) bei Temperaturen von 273 bis 323 K und Drücken bis 100 MPa durchgeführt. Die gewonnenen Daten wurden anschließend zur Entwicklung einer neuen, für Gasphasenberechnungen optimierten EoS für n-H2 verwendet [2]. Durch die Messungen konnten die Unsicherheiten der aus der EoS berechneten SoS im untersuchten Temperatur- und Druckbereich deutlich reduziert werden.

Im Projekt wurden umfangreiche Computational-Fluid-Dynamics-Simulationen (CFD-Simulationen) durchgeführt, um weitere Erkenntnisse über die Strömungsphysik in der Düse zu gewinnen. Zu diesem Zweck wurde in OpenFOAM ein numerisches Modell für Hochdruck-Wasserstoffströmungen in CFVN entwickelt, das verschiedene relevante Gaseffekte, wie zum Beispiel Kompressibilitätseffekte, Grenzschichteffekte, Übergangseffekte, berücksichtigt. Die erzielten Ergebnisse stimmen wesentlich besser mit den experimentellen Daten überein als bisher verfügbare Implementierungen.

Um das Strömungsverhalten nicht idealer Düsenkonturen bewerten und vergleichen zu können, wurden zusätzlich CFD-Simulationen für die in diesem Projekt experimentell untersuchten idealen Düsen sowie für parametrisierte Düsen durchgeführt. Der Durchflusskoeffizient dieser nicht idealen Düsen kann mit Hilfe der vorgeschlagenen Düsenformcharakterisierung sehr gut vorhergesagt werden. Die im Projekt entwickelten Implementierungen sind frei verfügbar [3].

Bild2 Kopie
Abb. 2: Mobiles HRS-Durchflussnormal

Da derzeit keine Prüfeinrichtung mit rückführbaren Standards zur Verfügung steht, mit der CFVNs direkt mit Hochdruckwasserstoff kalibriert werden können, musste eine alternative Methode entwickelt werden. Das gewählte Vorgehen ist, ein Coriolis Flow Meter (CFM) unter Hochdruckbedingungen (Bereich 10 MPa bis 90 MPa) mit einem gravimetrischen Primärnormal rückführbar zu kalibrieren, um es später als Referenzmessgerät für die Düsenkalibrierung verwenden zu können.

Für die Kalibrierung des Referenzmessgeräts wurde die H2-Versuchstankstelle (Hydrogen Refueling Station, HRS) des Zentrums für BrennstoffzellenTechnik (ZBT) in Duisburg ausgewählt. Für die Messungen wurde ein Rheonik RHM04 CFM als Referenzmessgerät in der „warmen Zone“ der HRS installiert, das heißt vor dem Wärmetauscher und dem Druckregelventil. In diesem Bereich ist die Temperatur stets nahe der Umgebungstemperatur und der Druck konstant hoch, typischerweise um 90 MPa. Für die Kalibrierung wurde ein mobiles HRS-Durchflussnormal verwendet, das direkt an die HRS angeschlossen wurde und somit den Platz eines Fahrzeugs einnahm.

Im letzten Schritt sollen die Ergebnisse der CFVN-Messkampagne mit denen der CFD-Simulationen verglichen werden. Dabei werden die neu entwickelten EoS sowohl in der Messkampagne als auch in den CFD-Simulationen eingesetzt, um beide Ergebnisse bestmöglich vergleichen zu können.

Messverfahren für flüssigen Wasserstoff

Neben gasförmigem Wasserstoff liegt ein Schwerpunkt des Projekts auf verflüssigtem Wasserstoff (LH2). Es gibt gegenwärtig noch keine Primär- oder Transfernormale für die Messung von LH2. Die mit der Verwendung eines Durchflusssensors für die Durchflussmessung von LH2 verbundene Unsicherheit ist unbekannt und nicht quantifiziert, da es keine direkte Rückführbarkeit auf Kalibrierungen mit LH2 als Kalibrierflüssigkeit gibt. Das Fehlen von Kalibriereinrichtungen bedeutet, dass Zähler, die mit LH2 verwendet werden, mit alternativen Flüssigkeiten wie Wasser, verflüssigtem Stickstoff (liquid nitrogen, LN2) oder Flüssigerdgas (liquefied natural gas, LNG) kalibriert werden müssen.

Im Rahmen des Projekts wurden daher drei Ansätze entwickelt, die auf völlig unabhängigen Rückführungsketten für die Messung von LH2-Durchflüssen basieren. Die ersten beiden Ansätze sind auf Durchflüsse beim Be- und Entladen von LH2-Tankwagen anwendbar (Durchflüsse bis zu 3.000 kg/h für einen Messquerschnitt DN25 bei Drücken bis etwa 1 MPa), der dritte auf kleinere Durchflüsse (4 kg/h für einen Messquerschnitt DN3 bei Drücken bis etwa 0,2 MPa).

Der erste Ansatz basiert auf der Bewertung der Übertragbarkeit von Wasser- und LNG-Kalibrierungen auf LH2-Bedingungen. Die Studie identifiziert und analysiert potenzielle Unsicherheitsbeiträge für kryogene CFMs. Die experimentelle und theoretische Analyse soll als Grundlage für Richtlinien für die Konstruktion und Auswahl von CFMs dienen, die für SI-rückführbare LH2-Durchflussmessungen geeignet sind. CFMs sind eine anerkannte Technologie für die direkte Messung des Massendurchflusses und der Dichte von Flüssigkeiten und werden typischerweise im kryogenen eichpflichtigen Verkehr für Transportkraftstoffanwendungen eingesetzt.

Die Literaturrecherche identifizierte mehrere Temperaturkorrekturmodelle, die auf LH2-Durchflüsse anwendbar sind, das heißt, wie die LH2-Durchflussmessung aufgrund von Temperatureffekten, die die CFM-Messung beeinflussen, korrigiert werden sollte. Numerische Finite-Elemente-Methoden (FEM) für U-förmige, bogenförmige und gerade Rohrkonstruktionen wurden verwendet, um die Temperaturempfindlichkeit von CFMs für die Messung von LH2-Durchflüssen vorherzusagen [4]. Schließlich können mit Hilfe der FEM auch Abschätzungen der erreichbaren Messunsicherheit unter Verwendung des aktuellen Stands der Technik für die LH2-Durchflussmessung durchgeführt werden.

Der zweite Ansatz basiert auf der kryogenen Laser Doppler Velocimetry (LDV) und wird als “Référence en Débitmétrie Cryogénique Laser“ (RDCL) bezeichnet. Die Rückführbarkeit wird durch Geschwindigkeitsmessungen gewährleistet, und es kann entweder als Primärnormal oder als Sekundärnormal für Durchflussmessungen von flüssigem Wasserstoff verwendet werden. Seine In-situ-Kalibrierunsicherheit in kryogenen Strömungen (d. h. Flüssigstickstoff, Flüssigerdgas) wurde auf 0,6 % (k = 2) geschätzt [5]. Da das RDCL in jeder Flüssiggasanlage installiert werden kann, hat es den Vorteil, dass eine repräsentative Kalibrierung unter Prozessbedingungen direkt in der Anlage durchgeführt werden kann.

Bild3 Kopie
Abb. 3: LDV-Standard für rückführbare kryogene Durchflussmessung

Der dritte Ansatz wird als Verdampfungsmethode bezeichnet. Die Rückführbarkeit auf SI-Einheiten wird in der Gasphase durch kalibrierte Laminar-Flow-Elemente (LFE) gewährleistet, nachdem das verflüssigte Gas verdampft wurde. Die LFE sind auf die Physikalisch-Technische Bundesanstalt (PTB) rückführbar. Wie beim ersten Ansatz muss die Übertragbarkeit alternativer Flüssigkeitskalibrierungen mit Wasser, LN2 und verflüssigtem Helium (LHe) bewertet werden, da die Kalibrierbank aus Sicherheitsgründen nicht für die direkte Verwendung von LH2 geeignet ist. Der kleinere Durchflussbereich und die Tatsache, dass nichtexplosive Gase verwendet werden, sind operationelle Vorteile der Verdampfungsmethode. Ein weiterer Vorteil ist die Verwendung von LHe (Siedepunkt bei etwa 4 K), so dass die Unsicherheit der alternativen Flüssigkeitskalibrierung auf Interpolation und nicht auf Extrapolation beruht.

Ein wichtiger Aspekt, der bei der Verdampfungsmethode berücksichtigt werden muss, ist die Umwandlung von Para-Wasserstoff in normalen Wasserstoff, die von Günz ausführlich untersucht wurde [6]. Bei tiefen Temperaturen liegt fast ausschließlich Para-Wasserstoff vor, bei Raumtemperatur ändert sich das Verhältnis auf 25 % Para- und 75 % Ortho-Wasserstoff (n-Wasserstoff). Para- und Ortho-Wasserstoff unterscheiden sich deutlich in bestimmten physikalischen Eigenschaften wie Wärmeleitfähigkeit, Wärmekapazität oder SoS. Diese können die Gasdurchflussmessung je nach Messprinzip des Durchflusssensors stark beeinflussen. LFEs, die zur Messung des Gasdurchflusses bei Umgebungsbedingungen eingesetzt werden, sind davon nicht betroffen, da Dichte und Viskosität, insbesondere im hier interessierenden Temperaturbereich, vernachlässigbare Unterschiede aufweisen.

Zusammenfassend kann gesagt werden, dass die Projektergebnisse das Vertrauen der Endnutzer und Verbraucher stärken werden. Die vorgestellten Methoden gewährleisten verlässliche Daten von Messungen, was für die Erhöhung des Wasserstoffanteils am Gesamtenergieverbrauch wichtig ist.

This project (20IND11 MetHyInfra) has received funding from the EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme.

Literatur

[1] Leachman, J. W.; Jacobsen, R. T.; Penoncello, S. G.; Lemmon, E. W.: Fundamental Equations of State for Parahydrogen, Normal Hydrogen, and Orthohydrogen, J. Phys. Chem. Ref. Data 38(3): 721-748 (2009) https://doi.org/10.1063/1.3160306

[2] Nguyen T-T-G, Wedler C, Pohl S, Penn D, Span R, Trusler JPM, Thol M. Experimental Speed-of-Sound Data and a Fundamental Equation of State for Normal Hydrogen Optimized for Flow Measurements. Unter Begutachtung in International Journal of Hydrogen Energy, 2024.

[3] Weiss, S. (2023). Dataset of publication „Derivation and validation of a reference data-based real gas model for hydrogen“ (V1.0) [Data set]. https://doi.org/10.5281/zenodo.10074998

[4] M.D. Schakel, F. Gugole, D. Standiford, J. Kutin, G. Bobovnik, N. Mole, R. Maury, D. Schumann, R. Kramer, C. Guenz, H.-B. Böckler, O. Büker, „Establish traceability for liquefied hydrogen flow measurements”, FLOMEKO, Chongqing, 2022

[5] Maury, R., Strzelecki, A., Auclercq, C., Lehot, Y., Loubat, S., Chevalier, J., Ben Rayana, F., Olsen, Å. A. F., Chupin, G., “Cryogenic flow rate measurement with a laser Doppler velocimetry standard,” Measurement Science and Technology, vol. 29, no. 3, p. 034009, 2018 https://doi.org/10.1088/1361-6501/aa9dd1

[6] C. Günz, “Good practice guide to ensure complete conversion from para to normal hydrogen of vaporized liquified hydrogen”, https://doi.org/10.7795/110.20221115

Autoren: Oliver Büker, RISE Research Institutes of Sweden, Borås, Sweden, Benjamin Böckler, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig

0 Kommentare

Einen Kommentar abschicken

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

preloader