H2 aus Altholz und Bananenschalen

H2 aus Altholz und Bananenschalen

Biomasse – ein unterschätzter Lieferant für grünen Wasserstoff

Forscher wollen künftig Wasserstoff aus regionalen Holzabfällen gewinnen. Bioabfälle und Klärschlamm können helfen, grünen Wasserstoff für die Energie- und Verkehrswende zu produzieren. Werden Span- oder MDF-Platten verwendet, müssen sie zuvor von Klebstoffen befreit werden. Dann könnte der regenerative Energieträger aber von lokalen Betrieben und Energieversorgern genutzt werden. So hätte biogener Wasserstoff das Potenzial, den Energiebedarf von Industrie und Schwerverkehr regional zu decken – ein echter Joker für die Energiewende.

---------- Werbung ----------

Eine klimaneutrale Kreislaufwirtschaft auf der Basis von Holz hätte viele Vorteile, beispielsweise in der Schwarzwaldregion: Hier ist Holz das wichtigste Wirtschaftsgut. Bei der Verarbeitung zu Möbeln und Baustoffen oder beim Abbruch von Gebäuden fallen beachtliche Mengen von Holzresten an. Eine Entsorgung kostet meist sogar noch Geld. Bisher werden Alt- und Restholz allenfalls durch Verbrennungsanlagen energetisch genutzt.

Schon seit dem Sommer 2021 schlägt die süddeutsche Region einen neuen Weg ein: Aus den Holzabfällen soll grüner Wasserstoff werden. „Nach dem Ansatz der Bioökonomie wollen wir mithilfe biotechnologischer Prozesse klimaneutralen Biowasserstoff sowie zusätzlich verwertbare Stoffe wie Carotinoide oder Proteine aus Altholz und Holzabfällen herstellen“, erläutert Ursula Schließmann. Sie arbeitet beim Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik (IGB) und koordiniert das Verbundvorhaben H2Wood – BlackForest.

---------- Werbung ----------

Durch die Verwendung von Altholz kann CO2 auf zwei Wegen eingespart werden: Zum einen ersetzt der regenerative Biowasserstoff bisherige fossile Energieträger, zum anderen werden Rest- und Altholz nicht nur Wasserstoff liefern. Durch den neuen biotechnologischen Ansatz wird die energetische Verwertung der Holzabfälle mit einer stofflichen Nutzung verknüpft. „Das aus dem Holz freigesetzte CO2 wird in Form von kohlenstoffbasierten Koppelprodukten gebunden“, erklärt Schließmann. „So wird es zurück in den natürlichen Kohlenstoffkreislauf geführt.“

Bislang existiert allerdings noch keine Anlage, die Biowasserstoff in größerem Maßstab herstellt. Am Fraunhofer IGB werden nun die dazu nötigen Prozesse vorbereitet und untersucht, bevor sie in der Pilotanlage am Campus Schwarzwald in Freudenstadt umgesetzt werden.

Das Bundesforschungsministerium (BMBF) fördert das Vorhaben im Schwarzwald bis Mitte 2024 mit rund 12 Mio. Euro. Partner des Projekts sind neben dem Fraunhofer IGB auch das Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA, das Institut für industrielle Fertigung und Fabrikbetrieb IFF der Universität Stuttgart sowie der Campus Schwarzwald.

Klebstoffe und Lacke entfernen

Der erste Schritt und Voraussetzung für die biotechnologische Umwandlung ist eine Vorbehandlung. Denn Holzabfälle wie Span- oder MDF-Platten enthalten Klebstoffe wie Harze und Phenole oder auch Lacke. Diese chemischen Bestandteile müssten entfernt werden, denn nur so könnten Bakterien und Mikroalgen ihre Arbeit erledigen, erläutert die Forscherin. Zudem muss das Holz in seine Bausteine zerlegt werden, um die gewonnene Cellulose in einzelne Zuckermoleküle zu spalten, welche wiederum den H2-produzierenden Mikroorganismen als Futter dienen.

Für die biotechnologische Umwandlung der Holzzucker setzt das Fraunhofer IGB auf ein Fermentationsverfahren mit Bakterien, welche die Zuckerarten zu CO2, organischen Säuren und Ethanol verstoffwechseln. Die Stoffwechselprodukte der Bakterien stellen die Nahrung für die Mikroalgen dar. Diese synthetisieren daraus Carotinoide oder Proteine als Koppelprodukte und setzen dabei auch Wasserstoff frei.

Dass grüner Wasserstoff das Potenzial hat, den Energiebedarf von Industrie und Schwerverkehr regional zu decken, belegt die aktuelle Studie „Industrielle Wasserstoff-Hubs in Baden-Württemberg“ des Fraunhofer IPA. Ihr Fazit: Die dezentrale Wasserstofferzeugung und -nutzung zahlt sich aus, wenn man Verteilerzentren, neudeutsch Hubs genannt, strategisch richtig platziert und verbindet. Mit Ökostrom werden dann in diesen Hubs Elektrolyseure betrieben. Um Transportkosten gering zu halten, müssen die Zentren nahe bei den Verbrauchern stehen. Ein weiteres Kriterium: Die Industrie vor Ort muss einen Bedarf an Prozesswärme, Hochtemperaturprozessen und Wasserstoffgas, etwa für die Herstellung von Stickstoffdünger, haben.

„Ideale Standorte befinden sich in der Nähe stark befahrener Straßen mit Lkw-Betriebshöfen, an denen sich H2-Tankstellen einrichten lassen“, sagt Jürgen Henke vom Fraunhofer IPA. Mithilfe der Standortkriterien konnte das Forscherteam geeignete Orte in Baden-Württemberg identifizieren. Vor allem in der Metropolregion Rhein-Neckar und im Großraum Karlsruhe. Computersimulationen am Fraunhofer IPA zeigen, dass sich mit regional erzeugtem grünem Wasserstoff innerhalb von zehn Jahren 30 Prozent der fossilen Energie ersetzen lassen – und das nur auf landeseigenen Freiflächen.

Projekt: Wasserstoff aus Pflanzenresten

Neben Holz ist Bioabfall eine weitgehend ungenutzte Ressource. Rund 4,6 Mio. Tonnen haben die Deutschen im vergangenen Jahr laut Umweltbundesamt allein in ihren braunen Tonnen gesammelt. Hinzu kommen Abfälle aus öffentlichen Parks und Gärten, aus der Landwirtschaft und aus der Nahrungsmittelproduktion, außerdem Klärschlamm und Speisereste aus Kantinen – alles in allem gut 15 Mio. Tonnen.

Der Großteil landet in Kompostieranlagen oder wird verbrannt, um Wärme und Strom zu erzeugen. „Doch dafür ist der Bioabfall viel zu schade“, betont Johannes Full, Leiter der Gruppe nachhaltige Entwicklung biointelligenter Technologien am Fraunhofer IPA. „Sinnvoller wäre es, daraus Wasserstoff zu erzeugen und das dabei entstehende CO2 abzuscheiden, zu speichern oder langfristig zu nutzen.“

Wie das funktioniert, demonstriert das Fraunhofer IPA bei einem Unternehmen aus der Metallbranche. Dort können Abfälle von Obst- und Weinbauern aus der Umgebung, Kartonagen und Altholz sowie Kantinenabfälle in Wasserstoff umgewandelt werden. Dieser wird dann direkt in der Metallverarbeitung genutzt. Dafür werden die Obstreste und Kantinenabfälle zunächst mithilfe von Bakterien in dunklen Behältern fermentiert, wobei H2 und CO2 entstehen. Anschließend wird die fermentierte Masse in einer Biogasanlage zu Methan vergoren.

Blitzlicht zerlegt Bananenschalen

Auch an der TH Lausanne in der Schweiz wandelt ein Team um den Forscher Hubert Girault Biomasse in Wasserstoff – mittels Fotopyrolyse. In einem Reaktor befindet sich eine sogenannte Xenon-Blitzlampe, die energiereiches Licht emittiert. Das Team hat dabei mit Bananenschalen, abgenagten Maiskolben, Orangenschalen, der Haut von Kaffeebohnen und Kokosnussschalen experimentiert. Diese wurden zunächst 24 Stunden lang bei 105 °C getrocknet und dann gemahlen.

Das Pulver geben die Forscher bei Umgebungsdruck in einen Reaktor. Dann wirft die Xenon-Lampe die Blitze in die Biomasse, die sich so in Wasserstoff und Biokohle verwandelt. Der Prozess ist schon nach wenigen Millisekunden abgeschlossen. Aus jedem Kilogramm Biomasse werden rund 100 Liter Wasserstoff und 330 Gramm Biokohle gewonnen. Das entspricht etwa einem Drittel der ursprünglichen getrockneten Masse aus Bananenschalen.

Das junge Schweizer Unternehmen H2Valais will dieses Verfahren nun großtechnisch einsetzen. Die Fotopyrolyse konkurriert allerdings mit der hydrothermalen Vergasung von Biomasse, die Start-ups wie SCW Systems in den Niederlanden und TreaTech in der Schweiz einsetzen. Nasse Biomasse wird dabei einem Druck von 250 bis 350 bar und einer Temperatur von 400 bis 700 °C ausgesetzt. Innerhalb von einigen Stunden bilden sich unter diesen Bedingungen Methan und Wasserstoff. Das zeigt noch mal: Die Ansätze zur H2-Gewinnung aus Biomasse sind vielfältig. Dieses Potenzial sollte im Sinne der Energiewende bald erschlossen werden.

Mobiler Container wandelt Pellets zu reinem H2

Das Verbundvorhaben BiDroGen forciert ebenfalls das Ziel, Holz in Wasserstoff umzuwandeln. Die Firmen BtX Energy und A.H.T. Syngas Technology bekommen dafür vom Bundeswirtschaftsministerium eine Förderung von 630.800 Euro. Das Projekt zielt darauf ab, eine Containerlösung zur dezentralen Erzeugung von Wasserstoff aus pelletierten Holzreststoffen bis zur Marktreife zu entwickeln.

Containerlösung als schlüsselfertige Anlage zur Dampfreformierung von Biogas

Grundlage dafür ist die bereits bestehende Vergasertechnologie von BtX zur Abscheidung von reinem Wasserstoff aus Mischgasen. Ziel ist es demnach, den Wasserstoffgehalt des aus Pellets produzierten Holzgases durch innovative Katalysatoren zu maximieren, die Gasreinheit für die folgenden Prozesse zu garantieren und die H2-Abspaltung aus dem Produktgasstrom zu ermöglichen. So soll sehr reiner Wasserstoff aus pelletiertem Restholz gewonnen werden. Je nach Gasqualität kann aus 12 bis 15 kg Holz ein Kilogramm reiner Wasserstoff gewonnen werden. Das entspricht einem Wirkungsgrad von über 50 Prozent.

Die mobile Containerlösung soll dann dezentral grünen Wasserstoff zur Verfügung stellen. Für die Anwendung sieht die Firma vor allem im ländlichen Raum großes Potenzial. Für die Verkehrswende könnte das ein echter Joker werden: So könnten Kommunen beispielsweise sofort wasserstoffbetriebene Fahrzeuge anschaffen, obwohl es noch keine Wasserstofftankstelle in der Region gibt.

Viessmann baut auf mikrobielle Methanerzeugung

Viessmann baut auf mikrobielle Methanerzeugung

Ulrich Schmack


Das zur Viessmann Group gehörende Unternehmen MicrobEnergy GmbH hat ein neues Konzept zur nachhaltigen Herstellung von Methan vorgestellt. Geschäftsführer Ulrich Schmack präsentierte das Verfahren, bei dem der Wasserstoff (H2) biologisch in CH4 umgewandelt wird, während der Strategiekonferenz der Deutschen Energieagentur 2012 in Berlin. Der mehrstufige Gesamtprozess nutzt Mikroorganismen, die bei Umgebungsdruck und -temperatur arbeiten, und setzt sich zusammen aus der Hydrolyse von Biomasse (Polymere) mit einer anschließenden Acidogenese der Monomere, einer Acetogenese der organischen Säuren sowie einer Methanogenese der Essigsäure. (mehr …)

Herstellung von Wasserstoff aus Biomasse

Ich halte das Konzept von Tetzlaff für eine Sensation – wenn es funktionieren würde.
Es besteht ja im Grunde aus 2 Teilen:
1. Die Herstellung von H2 aus Biomasse mit einem optimierten Steam-Reformer-Verfahren
2. Die Verteilung von H2 über das Gasnetz und Umwandlung beim Verbraucher (KWK vor Ort) mit BZ und BHKW
Das Konzept scheint selbst in Fachkreisen weitgehend unbekannt zu sein, wie ich bei meinen Recherchen festgestellt habe. Das Buch „Wasserstoff für alle“ hat kaum jemand wirklich gelesen, obwohl es mit wichtigen und interessanten Informationen gut gefüllt ist. Fachleute zweifeln, dass das wirklich funktioniert, obwohl Tetzlaff eigentlich nichts grundsätzlich Neues erfunden, sondern lediglich die Anlage von Güssing (Österreich) weiterentwickelt hat.
Es gibt allerdings noch zwei ungelöste Probleme:
1. Die Durchleitung von reinem H2 durch das vorhandene Gasnetz.
Dass ist für den Betrieb von BZ erforderlich, denn eine Beimischung von H2 zum Erdgas kann in der Praxis nicht funktionieren, weil man es nie schafft, beide Gase gleichzeitig zu verbrauchen.
Beim DVGW (Dr. Graf) gibt es erhebliche Vorbehalte – selbst gegen eine Erhöhung des H2-Anteils.
Es ist unklar, was wirklich geändert und umgebaut werden muss. Tetzlaff meint, dazu genügt der Austausch von Düsen bei älteren Heizkesseln. Andere meinen, dazu gehöre auch der Austausch von Ventilen, Reglern und Dichtungen sowie die Umrüstung von BHKW. Auf jeden Fall scheint eine Lösung für ältere Gasturbinen erforderlich zu sein, weil die von den Wassertropfen, die sich bei der Verbrennung bilden, beschädigt werden könnten. Deshalb wehren sich die Betreiber solcher Gasturbinen vehement gegen H2. Vielleicht wäre der Vorsatz eines Reformers, der das H2 in Methan umwandelt, eine brauchbare Lösung? Diese Kosten müsste der Gasnetzbetreiber übernehmen. Solange der Umfang und damit die Kosten nicht klar sind, wird niemand in den Bau einer H2-Fabrik investieren.
2. Die Kosten der Brennstoffzellen.
Tetzlaff meint, dass die BZ-Kosten dramatisch sinken, wenn sie in großen Stückzahlen hergestellt werden. Das erscheint glaubwürdig, denn die Konstruktion ist ja im Prinzip ziemlich einfach und lässt sich weitgehend automatisiert herstellen. Er rechnet mit <50 Euro/KW bei Stückzahlen von >100.000 Stück, was sowohl für Haushalte als auch für Autos schnell zu erreichen wäre, wenn es dafür ein Angebot gäbe. Das habe ich aber bisher nicht gefunden. Das scheint ein „Huhn-oder-Ei-Problem“ zu sein. Also müsste ein Hersteller oder Investor gefunden werden, der das in Erwartung entsprechender Stückzahl vorfinanziert.
Autor: Achim Behrenwaldt
Am 5.9.11 bearbeitet von Sven Geitmann

preloader