Dynamisch-energetische Optimierung von leichten BZ-Nutzfahrzeugen
Die Herausforderung bei der Auslegung eines brennstoffzellenelektrischen Antriebs besteht in der fahrzeug- und fahrzeuganwendungsspezifischen Dimensionierung der Komponenten des Antriebsstrangs. Als wesentliche Parameter, die für eine Optimierung zu berücksichtigen sind, gelten die Brennstoffzellenleistung, die Dynamik der Brennstoffzelle, die Masse an Wasserstoff im Tank, die Kapazität und die maximale Ladeleistung der HV-Batterie, die Leistung der Antriebsmaschine im motorischen und generatorischen Betrieb sowie auch das dynamische Verhalten der Wandler.
Virtuelle und reale Testverfahren sollten der Verifikation und Validierung modellbasiert entwickelter Brennstoffzellenantriebe dienen. Hierzu wurde an der Hochschule für angewandte Wissenschaften Kempten eine Entwicklungsplattform zur dynamisch-energetischen Optimierung dieser Antriebe realisiert.
Um auch Upscaling-Effekte untersuchen zu können, wurden in einer Skalierung von 1:10 ein Modell- und ein Hardware-in-the-Loop-Leistungs- bzw. -Systemteststand ((HiL-Teststand, max. Antriebsleistung 250 kW) in Betrieb genommen, deren gemeinsamer digitaler Zwilling als Model-in-the-Loop-Simulation (MiL-Simulation) realisiert wurde.
Exemplarisch wurde ein optimierter prototypischer BZ-Antriebsstrang in einen Versuchsträger implementiert, um die im Fahrversuch ermittelten Ergebnisse mit denen der Simulationen und Teststandmessungen vergleichen zu können. Die Anwendung iterativer und rekursiver Verfahren stellte die Reproduzierbarkeit der Ergebnisse sicher und zeigte die Funktionstüchtigkeit der entwickelten Methoden.
Die Innovation besteht nun darin, dass kleine und mittlere Unternehmen durch Anwendung dieser Methoden die Entwicklungskosten deutlich reduzieren und die Entwicklungszeiten erheblich verkürzen können.
Abb. 1: Schema der durch die Methodenkopplung realisierten Entwicklungsplattform
Die MiL-Simulationen beschreiben bestmöglich das Verhalten der Antriebe auf dem HiL-Teststand. Die HiL-Teststandmessungen sagen bestmöglich das Verhalten der Antriebe im Erprobungsträger voraus. Durch iteratives und rekursives Vorgehen konnte erreicht werden, dass bereits die Simulationen sehr guten Aufschluss über den Einsatz des Brennstoffzellenantriebs im Fahrzeug liefern.
Die cleanEngine-Testbench (HSRM)
Der eigens entwickelte Prüfstand der Hochschule RheinMain ermöglicht die detaillierte Untersuchung von Brennstoffzellensystemen (BZ-Systemen) mit einer Stackleistung von 3 bis zu 10 kW. Diese Entwicklung umfasst unter anderem die Steuerung des Prüfstands und des BZ-Systems sowie eine präzise Überwachung aller relevanten Parameter des Brennstoffzellenstacks und seiner für den Betrieb notwendigen Peripheriekomponenten.
Ziel des Projektes cleanEngine ist es, Leistungs- bzw. Energieanforderungen realer Fahrsituationen (WLTP u. a.), wie sie aus „echten Fahrten“ geeigneter Fahrzeuge entnommen wurden, auf einem Messstand „down zu skalieren“ und ein „Fahrprogramm“ zu entwickeln. Dieses Fahrprogramm soll gemäß der angefragten Fahrleistung einen optimierten Betrieb in Bezug auf Dynamik und Vermeidung kritischer Zustände der Brennstoffzelle erlauben. Durch genaue Beobachtung der Systemparameter ist so eine Steuerung des BZ-Systems möglich, die energetische Aufwände des Fahrbetriebs minimiert – man denke an die Hilfsaggregate, die heute bis zu 15 Prozent Energie verwenden und das Brennstoffzellensystem stets in seiner Komfortzone belassen. Dazu wurden im Zuge des Projektes jeweils drei PEM-BZ-Stacks der Leistungsklassen 3, 6 und 9 kW beschafft. Beim Aufbau der BZ-Systeme wurde Wert auf eine fahrzeugnahe Auslegung gelegt, in enger Absprache mit dem Team der HS Kempten bezüglich dessen Versuchsaufbaus.
Neben der Variierbarkeit der Betriebstemperatur und des -drucks zeichnet sich der Prüfaufbau durch eine passiv einstellbare Befeuchtung und eine aktive Rezirkulation des Wasserstoffs aus. Erste Erfahrungen haben bestätigt, dass es sich hier um wichtige Stellschrauben für eine flexible Anpassung an unterschiedliche Betriebsbedingungen und zur Erhöhung von Effizienz und Lebensdauer der Systeme handelt.
Abb. 2: Testbench der Hochschule RheinMain
Eine umfangreiche Sensorik erfasst sämtliche Massen- und Energieflüsse innerhalb des BZ-Systems. Dies schließt die simultane Einzelzellspannungsmessung und die Ermittlung des Leistungsbedarfs aller Systemkomponenten ein. Darüber hinaus werden Temperaturen, Drücke und Feuchtigkeitswerte kontinuierlich überwacht, was eine genaue Analyse der Betriebszustände ermöglicht.
Der Prüfstand bietet die Möglichkeit zur Bestimmung der Polarisationskennlinie des BZ-Stacks sowie zur Durchführung der elektrochemischen Impedanzspektroskopie an Einzelzellen oder wahlweise am gesamten Stack. Diese Verfahren sind entscheidend für das Verständnis der elektrochemischen Eigenschaften und der Leistungsfähigkeit der Brennstoffzellen. Neben diesen analytischen Methoden können am Prüfstand Fahrzyklusversuche und Dauerlaufversuche durchgeführt werden, um Alterungs- und Versagensmechanismen der Brennstoffzellen zu untersuchen.
Das offene Prüfsystem sowie die flexible Steuerung des BZ-Systems erlauben die Testung verschiedenster Systemkomponenten. Dazu gehören unter anderem Verdichter, Kühlmittel, Befeuchtungskonzepte, Ventile und diverse Sensoren. Darüber hinaus können sie genutzt werden, um die Brennstoffzellentechnologie weiterzuentwickeln. Sie liefern neue Erkenntnisse über die Leistungsfähigkeit und Effizienz der untersuchten BZ-Systeme und ermöglichen die Identifikation von Optimierungspotenzialen in Bezug auf Betriebstemperatur, Betriebsdruck, Befeuchtung und Rezirkulation.
Zudem unterstützen sie die Entwicklung von verbesserten Steuerungs- und Überwachungssystemen für Brennstoffzellensysteme, insbesondere zu Fragen zur Feuchte und den Temperaturverläufen. Die Ergebnisse schaffen eine Grundlage für die Weiterentwicklung von Analysemethoden wie der elektrochemischen Impedanzspektroskopie, um die elektrochemischen Eigenschaften und Leistungsfähigkeit der Brennstoffzellen besser zu verstehen. Darüber hinaus zeigen sie den Einfluss von verschiedenen Betriebsbedingungen auf Alterungs- und Versagensmechanismen der Brennstoffzellen auf, um die Langlebigkeit und Zuverlässigkeit der BZ-Systeme zu verbessern.
Abb. 3: Schematischer Aufbau des Teststands der Hochschule RheinMain
Konfiguration des HiL-Systemteststands (HKE)
Während in einer MiL-Simulation alle Komponenten durch physikalische Modelle abgebildet werden, sind auf einem HiL-Teststand alle wesentlichen Komponenten des Antriebs als Hardware integrier- und charakterisierbar. Nicht vorhandene Komponenten, wie das Fahrzeug selbst oder die Umgebung etc., werden wiederum durch physikalische Modelle in Form einer sogenannten Restbussimulation repräsentiert.
Aktuell sind auf dem Teststand als wesentliche Komponenten integriert:
- Toyota Brennstoffzellensystem, 80 kW, Dynamik ± 30 kW/s
- Antriebssynchronmaschine, 85 kW
- HV-Traktionsbatterie 36 kWh, niedrigere Kapazitäten können softwareseitig simuliert werden
- Asynchronlastmotor Pmax = 250 kW zum Aufbringen der Lastzyklen
- Externe Speicherbatterie (222 kWh) zur Speicherung elektrischer Energie und für Netzunabhängigkeit
Merkmale des HiL-Systemteststands
- Komplette Antriebsstränge sowie alle Einzelkomponenten können untersucht und charakterisiert werden.
- Derzeit ist der Teststand für Antriebe mit max. Antriebsleitung von 250 kW ausgelegt.
- Mögliche Testzyklen sind WLTC, NEFZ, insbesondere auch beliebig konfigurierbare Szenarien.
- Die Realisierung erfolgte komplett in Eigenleistung, von der Idee bis zur Inbetriebnahme.
Abbildung 4 zeigt schematisch den Aufbau des HiL-Systemteststands. Im linken unteren Block ist die real integrierte Fahrzeughardware, bestehend aus Brennstoffzellensystem, Antriebsmaschine, Kühlsystem, Traktionsakku, elektrischen Wandlern und der Power-Distribution-Unit (PDU), dargestellt. Als zentrales Steuergerät kommt die MicroAutoBox 3 von dSpace zum Einsatz. Für die komplexe Regelung der Energieflüsse zwischen Brennstoffzelle, Antriebsmaschine und Traktionsakku wurde ein sogenannter „intelligenter Energieflussregler“ als Software für das Steuergerät entwickelt.
Messungen auf dem Systemteststand zeigten sehr schnell, dass der elektrische Energiespeicher (Traktionsakku oder auch HV-Batterie genannt) der für die Fahrzeuganwendungen limitierende Faktor ist. Es ist eben nicht nur die Kapazität des elektrischen Speichers entscheidend, vielmehr limitiert die maximale Ladeleistung der Batterie bei Rekuperation und gleichzeitig nachlaufender Brennstoffzelle die Speicherung der zurückgewonnenen Energie, so dass nicht selten zusätzlich mechanisch gebremst werden muss. Daraus resultiert die Notwendigkeit einer beschleunigten Entwicklung von Batteriesystemen für wasserstoffelektrische Antriebe.
Abb. 4: Topologie des HiL-Systemteststands
Vergleich der Ergebnisse aus MiL-Simulationen mit HiL-Teststandmessungen
Die Abbildung 5 stellt den Vergleich der Simulationsergebnisse (in der linken Spalte) mit den Teststandmessungen (in der rechten Spalte) dar. Basis des Vergleichs ist der WLTC-Zyklus Klasse 3. In der ersten Zeile ist in Blau das Geschwindigkeitsprofil und in Rot der SoC der Batterie dargestellt. In der zweiten Zeile werden die Motordrehmomente und in der dritten Zeile die Motordrehzahlen verglichen.
In der vierten Zeile sieht man die Verläufe der Leistungen für das Brennstoffzellensystem, den Motor und die Batterie. Darüber hinaus sind die Ladeleistungsgrenze der Batterie sowie die vom intelligenten Energieflussregler gesetzte maximale Ladeleistung dargestellt.
Insgesamt kann festgestellt werden, dass die Ergebnisse der MiL-Simulation sehr gut mit den Messergebissen der HiL-Teststandversuche übereinstimmen.
Abb. 5: Vergleich der Ergebnisse aus Simulation und Teststandmessungen auf Basis WLTC Klasse 3
H2-Forschungsanlage der Hochschule Kempten
Die H2-Forschungsanlage (Teststand und Infrastruktur) der Hochschule Kempten wurde auf dem Campus des Abwasserverbands Kempten (AVKE, s. Abb. 1) installiert. Dort wird das Wasserstoffzentrum Kempten entstehen.
Die Zusammenarbeit der Hochschule Kempten mit dem AVKE ist ein Ergebnis des Projektes HyAllgäu, das im Rahmen des Programms HyLand im Teilprogramm HyExperts als Machbarkeitsstudie gefördert wurde. Gegenstand des Projektes war die Frage, inwieweit der zukünftige Wasserstoffbedarf des Allgäus durch eine H2-Produktion im Allgäu gedeckt werden kann (s. HZwei-Heft Apr. 2021).
Nächste Schritte und Resümee
Die Fahrerprobung durch die Firma ABT e-Line GmbH erfolgt derzeit, und danach steht der Vergleich der Fahrzeugmessdaten mit den Messdaten des Systemteststands an. Dass die Simulationsergebnisse sehr gut mit den Ergebnissen der Teststandmessungen übereinstimmen, wurde bereits erwähnt. Aktuell arbeiten wir an der eingangs erwähnten dynamisch-energetischen Optimierung des wasserstoffelektrischen Antriebs. Hierzu stellt sich als wesentliche Frage: Wie bzw. wodurch kann die Effizienz der Brennstoffzelle im Zusammenspiel mit der HV-Traktionsbatterie gesteigert werden, um z. B. den H2-Verbrauch zu minimieren?
Darüber hinaus konnte gezeigt werden, dass, um den Anforderungen von wasserstoffelektrischen Antrieben gerecht zu werden, eine Weiterentwicklung von elektrischen Speichersystemen in Richtung hybrider Systeme, bestehend aus Hochleistungs- und Hochenergiebatterien sowie sogenannten Superkondensatoren, dringend empfohlen wird.
Im Projekt cleanEngine haben wir gelernt, die relevanten Parameter des Energiemanagements zu verstehen und daraus Schlussfolgerungen zu ziehen, d. h., die Energieflüsse zwischen BZ-System, Traktionsbatterie und Antriebsmotor zu analysieren und durch einen eigens entwickelten intelligenten Energieflussregler fahrzeugtyp- und anwendungsbezogen zu optimieren. Dies befindet sich gerade in der Erprobung. Voraussetzung ist die optimierte Dimensionierung der Komponenten H2-Tank (H2-Menge), Batteriekapazität, Leistung des BZ-Systems und der Antriebsmaschine.
Insgesamt wurden im Projekt cleanEngine Verfahren, Methoden und Tools entwickelt, deren praxisnahe Anwendung es ermöglicht, umfassende technische und wissenschaftliche Fragestellungen im Kontext wasserstoffelektrischer Antriebe für stationäre und mobile Anwendungen zu beantworten.
Die Ergebnisse aus dem Förderprojekt cleanEngine zeigen die Bedeutung der ganzheitlichen Betrachtung von Brennstoffzellensystemen inklusive der BoP-Komponenten. Die einzigartige Gliederung des Projektes ermöglicht den Zoom von der Ebene des fertigen BZ-Hybridfahrzeugs über ein Prototypen-Hybrid-Antriebsstrangsystem hin zu den einzelnen Komponenten, die benötigt werden, um einen BZ-Stack zu betreiben, und dadurch die Darstellung der Wechselwirkungen dieser Systemebenen und -komponenten.
Das Projekt cleanEngine wird vom Bundesministerium für Digitales und Verkehr (BMDV) gefördert. Die administrative Verantwortung liegt bei der Nationalen Organisation Wasserstoff GmbH (NOW), und als Projektträger zeichnet der Projektträger Jülich (PTJ) verantwortlich. Projektpartner ist neben den Hochschulen Kempten (HKE – Yue Ni, André Giesbrecht, Moritz Gegenbauer, Christoph Zettler) und RheinMain (HSRM – Max Kleber, Georg Derscheid, Matthias Werner) die ABT eLine GmbH als Industrieunternehmen. Die Projektlaufzeit erstreckt sich nach Verlängerung um zwölf Monate vom 1. Dezember 2020 bis zum 30. November 2024.
Autor*innen sind:
Prof. Dr. Birgit Scheppat
Hochschule RheinMain
Birgit.Scheppat@hs-rm.de
Prof. Dr. Werner E. Mehr
Hochschule für angewandte Wissenschaften Kempten
werner.mehr@hs-kempten.de
0 Kommentare